Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires

被引:224
作者
Guo, Ru [1 ]
Luo, Hang [1 ]
Yan, Mingyang [1 ]
Zhou, Xuefan [1 ]
Zhou, Kechao [1 ]
Zhang, Dou [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金; 湖南省自然科学基金;
关键词
Dielectric composites; Sandwich structure; BaTiO3; nanowires; Breakdown strength; Energy density; ULTRAHIGH DISCHARGE EFFICIENCY; POLYMER NANOCOMPOSITES; STORAGE PERFORMANCE; DIELECTRIC-PROPERTIES; COMPOSITES; PERMITTIVITY; PLATELETS; FLUORIDE); FIELD;
D O I
10.1016/j.nanoen.2020.105412
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low energy densities of polymer-based composites restrict their application in miniaturization and integration of dielectric capacitors. Recently, multilayered hierarchical polymer composite is emerging as a promising route to address the aforementioned challenges. In most cases, high loading (>10 wt%) of ceramic nanoparticles were incorporated into polymer matrix to act as a hard layer for high permittivity. In fact, high-loading filler will inevitably cause agglomerations and deteriorate electric breakdown strength due to the poor dispersion and compatibility between the fillers and matrix. One-dimension nanowires exhibit obvious superiority to increase the permittivity of the nanocomposites due to large dipole moments from its high aspect ratios. In this work, a novel strategy of designing sandwich structured PVDF nanocomposites with low-loading BaTiO3 nanowires was proposed. The motivation is to maintain high breakdown strength by the contribution of barrier effect from the sandwich structure and low-loading of BaTiO3 nanowire fillers. Two sandwich structures including "3-0-3" and "0-3-0" (the digit representing BaTiO3 nanowires mass fraction in each layer) and single-layered BaTiO3/PVDF nanocomposites are fabricated for optimization and comparison. The results revealed that due to the contribution of interfacial polarization and barrier effect between adjacent layers, sandwich-structured BaTiO3/PVDF nanocomposites deliver greatly improved polarization, enhanced electric breakdown strength, and limited leakage current density, which significantly outperform single-layered films. For instance, a high breakdown strength of 519 kV mm 1 with a high maximum polarization of 12.1 mu C cm(-2), and an impressive discharged energy density of 19.1 J cm(-3) accompanied with energy efficiency of 68.6% were achieved even at a very low filler loading of 3 wt% BaTiO3 nanowires. In addition, the potential applications of the nanocomposites for energy storage have been further demonstrated by keeping stable performance after 106 charge-discharge cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] High Energy Storage Density of Sandwich-Structured Na0.5Bi0.5TiO3/PVDF Nanocomposites Enhanced by Optimizing the Dimensions of Fillers
    Yi, Zhihui
    Wang, Zhuo
    Nian, Wenwen
    Wang, Tian
    Chen, Haonan
    Cheng, Zhongyang
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 13528 - 13537
  • [22] Enhanced energy storage performance of ferroelectric polymer nanocomposites at relatively low electric fields induced by surface modified BaTiO3 nanofibers
    Li, Zeyu
    Liu, Feihua
    Yang, Guang
    Li, He
    Dong, Lijie
    Xiong, Chuanxi
    Wang, Qing
    COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 164 : 214 - 221
  • [23] Enhanced breakdown strength and suppressed dielectric loss of polymer nanocomposites with BaTiO3 fillers modified by fluoropolymer
    Zhang, Jianxin
    Ma, Jiachen
    Zhang, Luqing
    Zong, Chuanyong
    Xu, Anhou
    Zhang, Yabin
    Geng, Bing
    Zhang, Shuxiang
    RSC ADVANCES, 2020, 10 (12) : 7065 - 7072
  • [24] Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites
    Wang, Yifei
    Cui, Jin
    Wang, Linxi
    Yuan, Qibin
    Niu, Yujuan
    Chen, Jie
    Wang, Qing
    Wang, Hong
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (09) : 4710 - 4718
  • [25] Enhanced dielectric properties and energy storage of the sandwich-structured poly(vinylidene fluoride-co -hexafluoropropylene) composite films with functional BaTiO3 @Al2 O3 nanofibresInspec keywordsOther keywords
    Zha, Jun-Wei
    Yao, Shi-Cong
    Qiu, Yan
    Zheng, Ming-Sheng
    Dang, Zhi-Min
    IET NANODIELECTRICS, 2019, 2 (03) : 103 - 108
  • [26] Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride)-based dielectric film for high energy density capacitor
    Zhang, Yue
    Chi, Qingguo
    Liu, Lizhu
    Zhang, Changhai
    Chen, Chen
    Wang, Xuan
    Lei, Qingquan
    APL MATERIALS, 2017, 5 (07):
  • [27] 3D printing of anisotropic polymer nanocomposites with aligned BaTiO3 nanowires for enhanced energy density
    Luo, Hang
    Zhou, Xuefan
    Guo, Ru
    Yuan, Xi
    Chen, Hehao
    Abrahams, Isaac
    Zhang, Dou
    MATERIALS ADVANCES, 2020, 1 (01): : 14 - 19
  • [28] Enhanced energy density and thermostability in polyimide nanocomposites containing core-shell structured BaTiO3@SiO2 nanofibers
    Wang, Junchuan
    Long, Yunchen
    Sun, Ying
    Zhang, Xueqin
    Yang, Hong
    Lin, Baoping
    APPLIED SURFACE SCIENCE, 2017, 426 : 437 - 445
  • [29] Enhanced energy density in sandwich-structured P(VDF-HFP) nanocomposites containing Hf0.5Zr0.5O2 nanofibers
    Chen, Haiyan
    Liu, Yuan
    Yan, Mingyang
    Tang, Lin
    Luo, Hang
    Yuan, Xi
    Zhang, Dou
    CHEMICAL ENGINEERING JOURNAL, 2022, 436
  • [30] Constructing dual interfacial gold nanodot interlayers in sandwich-structured BaTiO3/P(VDF-HFP) composites for high energy storage density
    Yin, Peng
    Bie, Xiaohan
    Tang, Qingyang
    Zhu, Linwei
    Fan, Runhua
    Dastan, Davoud
    Cui, Hongzhi
    Zhang, Kun
    Shi, Zhicheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (12) : 8406 - 8415