Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires

被引:234
作者
Guo, Ru [1 ]
Luo, Hang [1 ]
Yan, Mingyang [1 ]
Zhou, Xuefan [1 ]
Zhou, Kechao [1 ]
Zhang, Dou [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
湖南省自然科学基金; 中国国家自然科学基金;
关键词
Dielectric composites; Sandwich structure; BaTiO3; nanowires; Breakdown strength; Energy density; ULTRAHIGH DISCHARGE EFFICIENCY; POLYMER NANOCOMPOSITES; STORAGE PERFORMANCE; DIELECTRIC-PROPERTIES; COMPOSITES; PERMITTIVITY; PLATELETS; FLUORIDE); FIELD;
D O I
10.1016/j.nanoen.2020.105412
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low energy densities of polymer-based composites restrict their application in miniaturization and integration of dielectric capacitors. Recently, multilayered hierarchical polymer composite is emerging as a promising route to address the aforementioned challenges. In most cases, high loading (>10 wt%) of ceramic nanoparticles were incorporated into polymer matrix to act as a hard layer for high permittivity. In fact, high-loading filler will inevitably cause agglomerations and deteriorate electric breakdown strength due to the poor dispersion and compatibility between the fillers and matrix. One-dimension nanowires exhibit obvious superiority to increase the permittivity of the nanocomposites due to large dipole moments from its high aspect ratios. In this work, a novel strategy of designing sandwich structured PVDF nanocomposites with low-loading BaTiO3 nanowires was proposed. The motivation is to maintain high breakdown strength by the contribution of barrier effect from the sandwich structure and low-loading of BaTiO3 nanowire fillers. Two sandwich structures including "3-0-3" and "0-3-0" (the digit representing BaTiO3 nanowires mass fraction in each layer) and single-layered BaTiO3/PVDF nanocomposites are fabricated for optimization and comparison. The results revealed that due to the contribution of interfacial polarization and barrier effect between adjacent layers, sandwich-structured BaTiO3/PVDF nanocomposites deliver greatly improved polarization, enhanced electric breakdown strength, and limited leakage current density, which significantly outperform single-layered films. For instance, a high breakdown strength of 519 kV mm 1 with a high maximum polarization of 12.1 mu C cm(-2), and an impressive discharged energy density of 19.1 J cm(-3) accompanied with energy efficiency of 68.6% were achieved even at a very low filler loading of 3 wt% BaTiO3 nanowires. In addition, the potential applications of the nanocomposites for energy storage have been further demonstrated by keeping stable performance after 106 charge-discharge cycles.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Negatively Charged Nanosheets Significantly Enhance the Energy-Storage Capability of Polymer-Based Nanocomposites [J].
Bao, Zhiwei ;
Hou, Chuangming ;
Shen, Zhonghui ;
Sun, Haoyang ;
Zhang, Genqiang ;
Luo, Zhen ;
Dai, Zhizhan ;
Wang, Chengming ;
Chen, Xiaowei ;
Li, Liangbin ;
Yin, Yuewei ;
Shen, Yang ;
Li, Xiaoguang .
ADVANCED MATERIALS, 2020, 32 (25)
[2]   Ultrahigh discharge efficiency and energy density achieved at low electric fields in sandwich-structured polymer films containing dielectric elastomers [J].
Chen, Jie ;
Wang, Yifei ;
Xu, Xinwei ;
Yuan, Qibin ;
Niu, Yujuan ;
Wang, Qing ;
Wang, Hong .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) :3729-3736
[3]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[4]   Fundamentals, processes and applications of high-permittivity polymer matrix composites [J].
Dang, Zhi-Min ;
Yuan, Jin-Kai ;
Zha, Jun-Wei ;
Zhou, Tao ;
Li, Sheng-Tao ;
Hu, Guo-Hua .
PROGRESS IN MATERIALS SCIENCE, 2012, 57 (04) :660-723
[5]   Significantly enhanced permittivity and energy density in dielectric composites with aligned BaTiO3 lamellar structures [J].
Guo, Ru ;
Roscow, James I. ;
Bowen, Chris R. ;
Luo, Hang ;
Huang, Yujuan ;
Ma, Yupeng ;
Zhou, Kechao ;
Zhang, Dou .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (06) :3135-3144
[6]   High energy density in PVDF nanocomposites using an optimized nanowire array [J].
Guo, Ru ;
Luo, Hang ;
Liu, Weiwei ;
Zhou, Xuefan ;
Tang, Lin ;
Zhou, Kechao ;
Zhang, Dou .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (26) :18031-18037
[7]   Topological-Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density [J].
Hu, Penghao ;
Shen, Yang ;
Guan, Yuhan ;
Zhang, Xuehui ;
Lin, Yuanhua ;
Zhang, Qiming ;
Nan, Ce-Wen .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (21) :3172-3178
[8]   Highly enhanced energy density induced by hetero-interface in sandwich-structured polymer nanocomposites [J].
Hu, Penghao ;
Wang, Jianjun ;
Shen, Yang ;
Guan, Yuhan ;
Lin, Yuanhua ;
Nan, Ce-Wen .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (39) :12321-12326
[9]   High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications [J].
Huang, Xingyi ;
Sun, Bin ;
Zhu, Yingke ;
Li, Shengtao ;
Jiang, Pingkai .
PROGRESS IN MATERIALS SCIENCE, 2019, 100 :187-225
[10]   Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage [J].
Jiang, Jianyong ;
Shen, Zhonghui ;
Qian, Jianfeng ;
Dan, Zhenkang ;
Guo, Mengfan ;
He, Yue ;
Lin, Yuanhua ;
Nan, Ce-Wen ;
Chen, Longqing ;
Shen, Yang .
NANO ENERGY, 2019, 62 :220-229