A numerical study of capillary pressure-saturation relationship for supercritical carbon dioxide (CO2) injection in deep saline aquifer

被引:17
|
作者
Khudaida, Kamal Jawher [1 ]
Das, Diganta Bhusan [1 ]
机构
[1] Univ Loughborough, Dept Chem Engn, Loughborough LE11 3TU, Leics, England
关键词
Two-phase flow; Capillary pressure; Porous media; Deep saline aquifer; CO2; sequestration; RELATIVE PERMEABILITY RELATIONSHIPS; 2-PHASE FLOW; GEOLOGIC SEQUESTRATION; POROUS-MEDIA; STORAGE; MODEL; IMPACT; FLUID; HYSTERESIS; SIMULATION;
D O I
10.1016/j.cherd.2014.04.020
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Carbon capture and sequestration (CCS) is expected to play a major role in reducing greenhouse gas in the atmosphere. It is applied using different methods including geological, oceanic and mineral sequestration. Geological sequestration refers to storing of CO2 in underground geological formations including deep saline aquifers (DSAs). This process induces multiphase fluid flow and solute transport behaviour besides some geochemical reactions between the fluids and minerals in the geological formation. In this work, a series of numerical simulations are carried out to investigate the injection and transport behaviour of supercritical CO2 in DSAs as a two-phase flow in porous media in addition to studying the influence of different parameters such as time scale, temperature, pressure, permeability and geochemical condition on the supercritical CO2 injection in underground domains. In contrast to most works which are focussed on determining mass fraction of CO2, this paper focuses on determining CO2 gas saturation (i.e., volume fraction) at various time scales, temperatures and pressure conditions taking into consideration the effects of porosity/permeability, heterogeneity and capillarity for CO2-water system. A series of numerical simulations is carried out to illustrate how the saturation, capillary pressure and the amount of dissolved CO2 change with the change of injection process, hydrostatic pressure and geothermal gradient. For example, the obtained results are used to correlate how increase in the mean permeability of the geological formation allows greater injectivity and mobility of CO2 which should lead to increase in CO2 dissolution into the resident brine in the subsurface. (C) 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3017 / 3030
页数:14
相关论文
共 50 条
  • [1] A multiscale algorithm for the mineralization process during supercritical carbon dioxide injection into a deep saline aquifer
    Rodrigues Sica, Luiz Umberto
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (06) : 3101 - 3120
  • [2] Impact of Capillary Pressure, Salinity and In situ Conditions on CO2 Injection into Saline Aquifers
    Alkan, H.
    Cinar, Y.
    Uelker, E. B.
    TRANSPORT IN POROUS MEDIA, 2010, 84 (03) : 799 - 819
  • [3] Effects of capillary pressure - fluid saturation - relative permeability relationships on predicting carbon dioxide migration during injection into saline aquifers
    Liu, Yongzhong
    Wang, Le
    Liu, Xiaoyu
    Ding, Tian
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 3616 - 3631
  • [4] Enhancement of CO2 dissolution and sweep efficiency in saline aquifer by micro bubble CO2 injection
    Jiang, Lanlan
    Xue, Ziqiu
    Park, Hyuck
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 138 : 1211 - 1221
  • [5] Connecting Pressure-Saturation and Relative Permeability Models to Fracture Properties: The Case of Capillary-Dominated Flow of Supercritical CO2 and Brine
    Wang, Lichun
    Cardenas, M. Bayani
    WATER RESOURCES RESEARCH, 2018, 54 (09) : 6965 - 6982
  • [6] A Numerical Study of Dynamic Capillary Pressure Effect for Supercritical Carbon Dioxide-Water Flow in Porous Domain
    Das, Diganta B.
    Gill, Bhupinder S.
    Abidoye, Luqman K.
    Khudaida, Kamal J.
    AICHE JOURNAL, 2014, 60 (12) : 4266 - 4278
  • [7] Numerical sensitivity analysis of CO2 mineralization trapping mechanisms in a deep saline aquifer
    Bello, Ayomikun
    Dorhjie, Desmond Batsa
    Ivanova, Anastasia
    Cheremisin, Alexey
    CHEMICAL ENGINEERING SCIENCE, 2024, 283
  • [8] Effects of Capillary Pressure on Multiphase Flow during CO2 Injection in Saline Aquifer
    Pau, J. S.
    Pao, W. K. S.
    Yong, S. P.
    Memon, P. Q.
    ICPER 2014 - 4TH INTERNATIONAL CONFERENCE ON PRODUCTION, ENERGY AND RELIABILITY, 2014, 13
  • [9] Experimental Investigation and Numerical Simulation of CO2-Brine-Rock Interactions during CO2 Sequestration in a Deep Saline Aquifer
    Liu, Bo
    Zhao, Fangyuan
    Xu, Jinpeng
    Qi, Yueming
    SUSTAINABILITY, 2019, 11 (02)
  • [10] CO2 storage capacity of a deep aquifer depending on the injection well location and cap rock capillary pressure
    Lubon, Katarzyna
    GOSPODARKA SUROWCAMI MINERALNYMI-MINERAL RESOURCES MANAGEMENT, 2020, 36 (02): : 173 - 195