Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations

被引:344
作者
Grepl, Martin A.
Maday, Yvon
Nguyen, Ngoc C.
Patera, Anthony T.
机构
[1] MIT, Cambridge, MA USA
[2] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2007年 / 41卷 / 03期
关键词
reduced-basis methods; parametrized PDEs; non-affine parameter dependence; offine-online procedures; elliptic PDEs; parabolic PDEs; nonlinear PDEs;
D O I
10.1051/m2an:2007031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the reduced-basis approximations developed earlier for linear elliptic and parabolic partial differential equations with affine parameter dependence to problems involving (a) nonaffine dependence on the parameter, and (b) nonlinear dependence on the field variable. The method replaces the nonaffine and nonlinear terms with a coefficient function approximation which then permits an efficient offline-online computational decomposition. We first review the coefficient function approximation procedure: the essential ingredients are (i) a good collateral reduced-basis approximation space, and (ii) a stable and inexpensive interpolation procedure. We then apply this approach to linear nonaffine and nonlinear elliptic and parabolic equations; in each instance, we discuss the reduced-basis approximation and the associated offline-online computational procedures. Numerical results are presented to assess our approach.
引用
收藏
页码:575 / 605
页数:31
相关论文
共 41 条
[11]  
ERDOS P, 1961, ACTA MATH ACAD SCI H, V12, P235
[12]   ON THE ERROR BEHAVIOR OF THE REDUCED BASIS TECHNIQUE FOR NON-LINEAR FINITE-ELEMENT APPROXIMATIONS [J].
FINK, JP ;
RHEINBOLDT, WC .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (01) :21-28
[13]  
GREPL M, 2005, THESIS MIT
[14]   A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations [J].
Grepl, MA ;
Patera, AT .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (01) :157-181
[15]  
GREPL MA, 2007, SIAM COMPUTATIONAL S, P197
[16]   Solution to the time-harmonic Maxwell's equations in a waveguide; Use of higher-order derivatives for solving the discrete problem [J].
Guillaume, P ;
Masmoudi, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1306-1330
[17]  
Gunzburger M. D., 1989, FINITE ELEMENT METHO
[18]   A reduced-order method for simulation and control of fluid flows [J].
Ito, K ;
Ravindran, SS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 143 (02) :403-425
[19]  
Ito K, 1998, INT S NUM M, V126, P153
[20]  
Lions JL., 1969, Quelques methodes de resolution des problemes aux limites non lineaires