Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations

被引:344
作者
Grepl, Martin A.
Maday, Yvon
Nguyen, Ngoc C.
Patera, Anthony T.
机构
[1] MIT, Cambridge, MA USA
[2] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2007年 / 41卷 / 03期
关键词
reduced-basis methods; parametrized PDEs; non-affine parameter dependence; offine-online procedures; elliptic PDEs; parabolic PDEs; nonlinear PDEs;
D O I
10.1051/m2an:2007031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the reduced-basis approximations developed earlier for linear elliptic and parabolic partial differential equations with affine parameter dependence to problems involving (a) nonaffine dependence on the parameter, and (b) nonlinear dependence on the field variable. The method replaces the nonaffine and nonlinear terms with a coefficient function approximation which then permits an efficient offline-online computational decomposition. We first review the coefficient function approximation procedure: the essential ingredients are (i) a good collateral reduced-basis approximation space, and (ii) a stable and inexpensive interpolation procedure. We then apply this approach to linear nonaffine and nonlinear elliptic and parabolic equations; in each instance, we discuss the reduced-basis approximation and the associated offline-online computational procedures. Numerical results are presented to assess our approach.
引用
收藏
页码:575 / 605
页数:31
相关论文
共 41 条
[1]   AUTOMATIC CHOICE OF GLOBAL SHAPE FUNCTIONS IN STRUCTURAL-ANALYSIS [J].
ALMROTH, BO ;
STERN, P ;
BROGAN, FA .
AIAA JOURNAL, 1978, 16 (05) :525-528
[2]   Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems [J].
Bai, ZJ .
APPLIED NUMERICAL MATHEMATICS, 2002, 43 (1-2) :9-44
[3]   Parametric families of reduced finite element models. Theory and applications [J].
Balmes, E .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1996, 10 (04) :381-394
[4]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[5]   ON THE REDUCED BASIS METHOD [J].
BARRETT, A ;
REDDIEN, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (07) :543-549
[6]  
BUL TT, 2003, P 15 AIAA COMP FLUID
[7]  
CHEN J, 2001, P IEEE INT S CIRC SY, V2, P457
[8]  
Chen Y, 2000, 2000 INTERNATIONAL CONFERENCE ON MODELING AND SIMULATION OF MICROSYSTEMS, TECHNICAL PROCEEDINGS, P477
[9]   Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows [J].
Christensen, EA ;
Brons, M ;
Sorensen, JN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (04) :1419-1434
[10]  
Cuong Nguyen Ngoc, 2005, Handbook of Materials Modeling, P1529