Diagram groups, braid groups, and orderability

被引:4
|
作者
Wiest, B [1 ]
机构
[1] Univ Rennes 1, UFR Math, F-35042 Rennes, France
关键词
diagram group; braid group; Thompson group; orderable group;
D O I
10.1142/S0218216503002482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that all diagram groups (in the sense of Guba and Sapir) are left-orderable. The proof is in two steps: firstly, it is proved that all diagram groups inject in a certain braid group on infinitely many strings, and secondly, this group is then shown to be left-orderable.
引用
收藏
页码:321 / 332
页数:12
相关论文
共 50 条
  • [31] Diagram groups
    Guba, V
    Sapir, M
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 130 (620) : 1 - +
  • [32] On complexity of the word problem in braid groups and mapping class groups
    Hamidi-Tehrani, H
    TOPOLOGY AND ITS APPLICATIONS, 2000, 105 (03) : 237 - 259
  • [33] GRAPH BRAID GROUPS AND RIGHT-ANGLED ARTIN GROUPS
    Kim, Jee Hyoun
    Ko, Ki Hyoung
    Park, Hy Won
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 309 - 360
  • [34] Experiments on growth series of braid groups
    Fromentin, Jean
    JOURNAL OF ALGEBRA, 2022, 607 : 232 - 259
  • [35] Automorphisms of braid groups on orientable surfaces
    An, Byung Hee
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (05)
  • [36] Transitive signatures from braid groups
    Wang, Licheng
    Cao, Zhenfu
    Zheng, Shihui
    Huang, Xiaofang
    Yangi, Yixian
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2007, 2007, 4859 : 183 - 196
  • [37] Experiments on growth series of braid groups
    Fromentin, Jean
    JOURNAL OF ALGEBRA, 2022, 607 : 232 - 259
  • [38] Biparametric Irreducible Representations of Braid Groups
    仝殿民
    朱诚久
    杨善德
    Science China Mathematics, 1994, (11) : 1370 - 1377
  • [39] ON INDEPENDENCE OF SOME PSEUDOCHARACTERS ON BRAID GROUPS
    Dynnikov, I. A.
    Shastin, V. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (06) : 863 - 876
  • [40] Zariski theorems and diagrams for braid groups
    David Bessis
    Inventiones mathematicae, 2001, 145 : 487 - 507