A fractional p(x, .)-Laplacian problem involving a singular term

被引:0
|
作者
Mokhtari, A. [1 ]
Saoudi, K. [2 ,3 ]
Chung, N. T. [4 ]
机构
[1] Univ Msila, Lab Fixed Point Theory & Applicat, Dept Math, Fac Math & Informat,ENS Kouba, Algiers, Algeria
[2] Univ Imam Abdulrahman Bin Faisal, Coll Sci Dammam, Dammam 31441, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
[4] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
来源
关键词
Fractional p(x; )-Laplace operators; Singular equations; Minimization methods; Fractional Sobolev spaces; POSITIVE SOLUTIONS; EQUATION; MULTIPLICITY; REGULARITY; EXISTENCE;
D O I
10.1007/s13226-021-00037-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a class of singular problems involving the fractional p(x, .)-Laplace operator of the form {(-Delta)(p(x,.))(s) u(x) = lambda/u(gamma(x)) + u(q(x)+1) in Omega, u > 0, in Omega u = 0 on R-N\Omega, where Omega is a smooth bounded domain in R-N (N >= 3), 0<s<1, lambda is a positive parameter and gamma : R-N -> (0, 1) is a continuous function, p : R-2N -> (1, infinity) is a bounded, continuous and symmetric function, q : R-N -> (1, infinity) is a continuous function. Using the direct method of minimization combined with the theory of fractional Sobolev spaces with variable exponents, we prove that the problem has one positive solution for lambda > 0 small enough. To our best knowledge, this paper is one of the first attempts in the study of singular problems involving fractional p(x, .)-Laplace operators.
引用
收藏
页码:100 / 111
页数:12
相关论文
共 50 条