Analysis of factors related to varietal differences in the yield of rice (Oryza sativa L.) under Free-Air CO2 Enrichment (FACE) conditions

被引:14
|
作者
Yoshinaga, Satoshi [1 ]
Tokida, Takeshi [2 ,3 ]
Usui, Yasuhiro [2 ,3 ]
Sakai, Hidemitsu [2 ,3 ]
Nakamur, Hirofumi [4 ]
Hasegawa, Toshihiro [2 ,3 ]
Nakano, Hiroshi [1 ]
Arai-Sanoh, Yumiko [1 ]
Ishimaru, Tsutomu [1 ]
Takai, Toshiyuki [1 ]
Kondo, Motohiko [1 ]
机构
[1] NARO, Natl Inst Crop Sci, Div Rice Res, Tsukuba, Ibaraki, Japan
[2] NARO, Div Climate Change, Natl Inst Agroenvironm Sci, Tsukuba, Ibaraki, Japan
[3] NARO, Div Biogeochem Cycles, Natl Inst Agroenvironm Sci, Tsukuba, Ibaraki, Japan
[4] Taiyokeiki Co Ltd, Toda, Saitama, Japan
关键词
Dry matter production; FACE; rice (Oryza sativa); sink capacity; varietal difference; yield; ELEVATED CO2; GENOTYPIC VARIATION; CARBON-DIOXIDE; GRAIN-YIELD; RESPONSES; GROWTH; PERFORMANCE; CULTIVARS; QUALITY; IMPACT;
D O I
10.1080/1343943X.2019.1683455
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Enhancing crop traits that increase grain yield under elevated CO2 concentrations is an important option for increasing the future productivity of rice. Here, we compared the growth and yield of five varieties with different genetic background under Free-Air CO2 Enrichment (FACE) conditions to identify traits responsible for varietal differences in yield increase under elevated CO2. Three high-yielding and two standard rice varieties grown under FACE conditions commonly had (1) shorter growth periods, (2) higher dry matter production, (3) higher numbers of spikelets (sink capacity) and panicles; and (4) higher yield than those grown under ambient CO2. Yield enhancement by elevated CO2 (FACE/Ambient), however, differed significantly among varieties, ranging from 1.10 to 1.25. The greater response of the sink capacity, defined as the product of spikelet number and single grain mass, was the main factor involved in yield increase. Three high-yielding varieties (Momiroman, Takanari, and Hokuriku 193) had greater sink capacity than two standard varieties and the sink capacity of these varieties significantly increased under FACE condition. However, yield enhancement in elevated CO2 was lower in Hokuriku 193 than in Momiroman and Takanari. In Hokuriku 193, sink production was relatively low while dry matter production was similar to the others. Therefore, larger increase in sink production efficiency per unit of dry matter production under FACE was found to be a particularly important varietal trait, suggesting that efforts to develop varieties suited to the predicted elevated CO2 condition should focus on this and the related traits.
引用
收藏
页码:19 / 27
页数:9
相关论文
共 50 条
  • [31] Varietal Differences in the Root Systems of Rice (Oryza sativa L.) under Drip Irrigation with Plastic Film Mulch
    Wang, Junfa
    Fawibe, Oluwasegun Olamide
    Isoda, Akihiro
    AGRONOMY-BASEL, 2023, 13 (12):
  • [32] Genotypic Differences in Grain Yield and Nitrogen Uptake of Lowland Rice (Oryza sativa L.) under Irrigated and Rainfed Conditions
    Jabbar, S. M. A.
    Cruz, Pompe C. Sta.
    Siopongco, Joel D. L. C.
    Cosico, Wilfredo C.
    Sanchez, Pearl B.
    Amarante, Serafin T.
    Haefele, Stephan M.
    PHILIPPINE JOURNAL OF CROP SCIENCE, 2009, 34 (01): : 22 - 37
  • [33] Productivity and water use of wheat under free-air CO2 enrichment
    Kimball, BA
    Pinter, PJ
    Garcia, RL
    LaMorte, RL
    Wall, GW
    Hunsaker, DJ
    Wechsung, G
    Wechsung, F
    Kartschall, T
    GLOBAL CHANGE BIOLOGY, 1995, 1 (06) : 429 - 442
  • [34] Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: A 3-year free-air CO2 enrichment experiment
    Han, Xue
    Hao, Xingyu
    Lam, Shu Kee
    Wang, Heran
    Li, Yingchun
    Wheeler, Tim
    Ju, Hui
    Lin, Erda
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2015, 209 : 132 - 137
  • [35] Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops
    Kim, HY
    Lieffering, M
    Kobayashi, K
    Okada, M
    Mitchell, MW
    Gumpertz, M
    FIELD CROPS RESEARCH, 2003, 83 (03) : 261 - 270
  • [36] Effects of free-air CO2enrichment (FACE) and nitrogen (N) supply on N uptake and utilization of indica and japonica cultivars (Oryza sativaL.)
    Jiang, Qian
    Zhang, Jishuang
    Xu, Xi
    Liu, Gang
    Zhu, Jianguo
    ECOLOGICAL PROCESSES, 2020, 9 (01)
  • [37] Impact of Elevated Ozone on Nutrient Uptake and Utilization of Chinese Hybrid Indica Rice (Oryza Sativa) Cultivars under Free-Air Ozone Enrichment
    Kou, T. J.
    Xu, G. W.
    Zhu, J. G.
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2017, 48 (06) : 635 - 645
  • [38] Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field
    Inubushi, K
    Cheng, WG
    Aonuma, S
    Hoque, MM
    Kobayashi, K
    Miura, S
    Kim, HY
    Okada, M
    GLOBAL CHANGE BIOLOGY, 2003, 9 (10) : 1458 - 1464
  • [39] Free-air CO2 enrichment modifies maize quality only under drought stress
    Erbs, Martin
    Manderscheid, Remy
    Huether, Liane
    Schenderlein, Anke
    Wieser, Herbert
    Daenicke, Sven
    Weigel, Hans-Joachim
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2015, 35 (01) : 203 - 212
  • [40] Elevated CO2 Could Reduce Spikelet Fertility and Grain Appearance Quality of Rice (Oryza sativa L.) Grown under High-temperature Conditions
    Yamaguchi, Masahiro
    Kamiya, Shoma
    Kokubun, Dai
    Nakayama, Tomoki
    Yonekura, Tetsushi
    Kohno, Yoshihisa
    ASIAN JOURNAL OF ATMOSPHERIC ENVIRONMENT, 2022, 16 (03)