An O(n log n) implementation of the standard method for minimizing n-state finite automata

被引:11
作者
Blum, N
机构
[1] Informatik IV, Universität Bonn, D-53117 Bonn
关键词
algorithms; finite automata; minimization;
D O I
10.1016/0020-0190(95)00199-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
More than 20 years ago, Hopcroft (1971) has given an algorithm for minimizing an n-state finite automaton in O(kn log n) time where k is the size of the alphabet. This contrasts to the usual O(kn(2)) algorithms presented in text books. Since Hopcroft's algorithm changes the standard method, a nontrivial correctness proof for its method is needed. In lectures given at university, mostly the standard method and its straightforward O(kn(2)) implementation is presented. We show that a slight modification of the O(kn(2)) implementation combined with the use of a simple data structure composed of chained lists and four arrays of pointers (essentially the same as Hopcroft's data structure) leads to an O(kn log n) implementation of the standard method. Thus, it is possible to present in lectures, with a little additional amount of time, an O(kn log n) time algorithm for minimizing n-state finite automata.
引用
收藏
页码:65 / 69
页数:5
相关论文
共 45 条
  • [21] Scattering from elongated objects: Direct solution in O(N log(2) N) operations
    Michielssen, E
    Boag, A
    Chew, WC
    IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 1996, 143 (04) : 277 - 283
  • [22] The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in O(n log n) Time
    Firoz, Jesun Sahariar
    Hasan, Masud
    Khan, Ashik Zinnat
    Rahman, M. Sohel
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (08) : 1007 - 1011
  • [23] An O(n log n) Algorithm for Maximum st-Flow in a Directed Planar Graph
    Borradaile, Glencora
    Klein, Philip
    JOURNAL OF THE ACM, 2009, 56 (02)
  • [24] Perfect Matching for Biconnected Cubic Graphs in O(n log2 n) Time
    Diks, Krzysztof
    Stanczyk, Piotr
    SOFSEM 2010: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS, 2010, 5901 : 321 - 333
  • [25] AN O(LOG N) ALGORITHM TO SOLVE LINEAR RECURRENCES ON HYPERCUBES
    REDDY, HN
    LEISS, EL
    INFORMATION PROCESSING LETTERS, 1994, 49 (06) : 319 - 325
  • [26] FULLY DYNAMIC MAXIMAL MATCHING IN O(log n) UPDATE TIME
    Baswana, Surender
    Gupta, Manoj
    Sen, Sandeep
    SIAM JOURNAL ON COMPUTING, 2015, 44 (01) : 88 - 113
  • [27] Fully dynamic maximal matching in O(log n) update time
    Baswana, Surender
    Gupta, Manoj
    Sen, Sandeep
    2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011), 2011, : 383 - 392
  • [28] A O(log n) Signature-Based String Matching Algorithm
    Nofal, Samer
    PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, VOLS 1-3, 2009, : 828 - 830
  • [29] Minimum Cut in O(m log2 n) Time
    Gawrychowski, Pawel
    Mozes, Shay
    Weimann, Oren
    THEORY OF COMPUTING SYSTEMS, 2024, 68 (04) : 814 - 834
  • [30] On-line construction of two-dimensional suffix trees in O(n2 log n) time
    Na, Joong Chae
    Giancarlo, Raffaele
    Park, Kunsoo
    ALGORITHMICA, 2007, 48 (02) : 173 - 186