An O(n log n) implementation of the standard method for minimizing n-state finite automata

被引:11
作者
Blum, N
机构
[1] Informatik IV, Universität Bonn, D-53117 Bonn
关键词
algorithms; finite automata; minimization;
D O I
10.1016/0020-0190(95)00199-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
More than 20 years ago, Hopcroft (1971) has given an algorithm for minimizing an n-state finite automaton in O(kn log n) time where k is the size of the alphabet. This contrasts to the usual O(kn(2)) algorithms presented in text books. Since Hopcroft's algorithm changes the standard method, a nontrivial correctness proof for its method is needed. In lectures given at university, mostly the standard method and its straightforward O(kn(2)) implementation is presented. We show that a slight modification of the O(kn(2)) implementation combined with the use of a simple data structure composed of chained lists and four arrays of pointers (essentially the same as Hopcroft's data structure) leads to an O(kn log n) implementation of the standard method. Thus, it is possible to present in lectures, with a little additional amount of time, an O(kn log n) time algorithm for minimizing n-state finite automata.
引用
收藏
页码:65 / 69
页数:5
相关论文
共 45 条
  • [1] Polynomial Multiplication over Finite Fields in Time O(n log n)
    Harvey, David
    van der Hoeven, Joris
    JOURNAL OF THE ACM, 2022, 69 (02)
  • [2] Denser packings obtained in O(n log log n) tTime
    Pisinger, David
    INFORMS JOURNAL ON COMPUTING, 2007, 19 (03) : 395 - 405
  • [3] An n log n algorithm for hyper-minimizing a (minimized) deterministic automaton
    Holzer, Markus
    Maletti, Andreas
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (38-39) : 3404 - 3413
  • [4] An in-place sorting with O (n log n) comparisons and O(n) moves
    Franceschini, G
    Geffert, V
    JOURNAL OF THE ACM, 2005, 52 (04) : 515 - 537
  • [5] Integer multiplication in time O(n log n)
    Harvey, David
    van der Hoeven, Joris
    ANNALS OF MATHEMATICS, 2021, 193 (02) : 563 - 617
  • [6] An O(n(3) log log n/log(2) n) time algorithm for all pairs shortest paths
    Han, Yijie
    Takaoka, Tadao
    JOURNAL OF DISCRETE ALGORITHMS, 2016, 38-41 : 9 - 19
  • [7] Deterministic sorting in O (n log log n) time and linear space
    Han, YJ
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2004, 50 (01): : 96 - 105
  • [8] An O(n log n) algorithm for finding dissimilar strings
    Abbasi, S
    Sengupta, A
    INFORMATION PROCESSING LETTERS, 1997, 62 (03) : 135 - 139
  • [9] Minimum Cut of Directed Planar Graphs in O(n log log n) Time
    Mozes, Shay
    Nikolaev, Kirill
    Nussbaum, Yahav
    Weimann, Oren
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 477 - 494
  • [10] An O(n3(log log n/log n)5/4) Time Algorithm for All Pairs Shortest Path
    Yijie Han
    Algorithmica, 2008, 51 : 428 - 434