Bloch, Besov and Dirichlet Spaces of Slice Hyperholomorphic Functions

被引:32
作者
Castillo Villalba, C. Marco Polo [1 ]
Colombo, Fabrizio [2 ]
Gantner, Jonathan [3 ]
Oscar Gonzalez-Cervantes, J. [4 ]
机构
[1] Cuidad Univ, Inst Matemat, Unidad Posgrad, Mexico City 04510, DF, Mexico
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[3] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[4] IPN, Dept Matemat, ESFM, Mexico City 07338, DF, Mexico
关键词
Bloch spaces; Besov spaces; Dirichlet spaces; Slice hyperholomorphic functions; NONCOMMUTING OPERATORS; CALCULUS;
D O I
10.1007/s11785-014-0380-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we begin the study of some important Banach spaces of slice hyperholomorphic functions, namely the Bloch, Besov and weighted Bergman spaces, and we also consider the Dirichlet space, which is a Hilbert space. The importance of these spaces is well known, and thus their study in the framework of slice hyperholomorphic functions is relevant, especially in view of the fact that this class of functions has recently found several applications in operator theory and in Schur analysis. We also discuss the property of invariance of these function spaces with respect to Mobius maps by using a suitable notion of composition.
引用
收藏
页码:479 / 517
页数:39
相关论文
共 50 条
[41]   Littlewood-Paley Functions and Triebel-Lizorkin Spaces, Besov Spaces [J].
Fan, Dashan ;
Zhao, Fayou .
ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (03) :267-288
[42]   BV FUNCTIONS AND FRACTIONAL LAPLACIANS ON DIRICHLET SPACES [J].
Ruiz, Patricia Alonso ;
Baudoin, Fabrice ;
Chen, Li ;
Rogers, Luke ;
Shanmugalingam, Nageswari ;
Teplyaev, Alexander .
ASIAN JOURNAL OF MATHEMATICS, 2023, 27 (04) :441-466
[43]   Dirichlet and Hardy spaces of harmonic and monogenic functions [J].
Bernstein, S ;
Gürlebeck, K ;
Reséndis, LF ;
Tovar, LM .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (04) :763-789
[44]   ON THE ZEROS OF FUNCTIONS IN DIRICHLET-TYPE SPACES [J].
Pau, Jordi ;
Angel Pelaez, Jose .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (04) :1981-2002
[45]   SOME CALCULUS OF THE COMPOSITION OF FUNCTIONS IN BESOV-TYPE SPACES [J].
Moussai, Madani ;
Saadi, Mohamed .
MATEMATICKI VESNIK, 2018, 70 (02) :120-133
[46]   Boundary conjugation problem for piecewise analytic functions in Besov spaces [J].
Bliev, N. K. ;
Yerkinbayev, N. M. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) :849-856
[47]   Characterization of Besov Spaces on Nested Fractals by Piecewise Harmonic Functions [J].
Kabanava, Maryia .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2012, 31 (02) :183-201
[48]   Haar functions in weighted Besov and Triebel-Lizorkin spaces [J].
Malecka, Agnieszka .
JOURNAL OF APPROXIMATION THEORY, 2015, 200 :1-27
[49]   Spectral Properties of Two Classes of Averaging Operators on the Little Bloch Space and the Analytic Besov Spaces [J].
E. Albrecht ;
T. L. Miller .
Complex Analysis and Operator Theory, 2014, 8 :129-157
[50]   Spectral Properties of Two Classes of Averaging Operators on the Little Bloch Space and the Analytic Besov Spaces [J].
Albrecht, E. ;
Miller, T. L. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (01) :129-157