Constraints on Topological Order in Mott Insulators

被引:55
|
作者
Zaletel, Michael P. [1 ,2 ]
Vishwanath, Ashvin [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
CHIRAL SPIN LIQUID; GROUND-STATE; LATTICE; ANYONS; MODEL;
D O I
10.1103/PhysRevLett.114.077201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We point out certain symmetry induced constraints on topological order in Mott insulators (quantum magnets with an odd number of spin 1/2 moments per unit cell). We show, for example, that the double-semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent about which topological order is permitted. Our result applies to the kagome lattice quantum antiferromagnet, where recent numerical calculations of the entanglement entropy indicate a ground state compatible with either toric code or double-semion topological order. Our result rules out the latter possibility.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Simulating higher-order topological insulators in density wave insulators
    Lin, Kuan-Sen
    Bradlyn, Barry
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [32] Space group constraints on weak indices in topological insulators
    Varjas, Daniel
    de Juan, Fernando
    Lu, Yuan-Ming
    PHYSICAL REVIEW B, 2017, 96 (03)
  • [33] Nonlinear Second-Order Topological Insulators
    Zangeneh-Nejad, Farzad
    Fleury, Romain
    PHYSICAL REVIEW LETTERS, 2019, 123 (05)
  • [34] Higher-order topological Anderson insulators
    Yang, Yan-Bin
    Li, Kai
    Duan, L-M
    Xu, Yong
    PHYSICAL REVIEW B, 2021, 103 (08)
  • [35] Higher-order topological solitonic insulators
    Zhixiong Li
    Yunshan Cao
    Peng Yan
    Xiangrong Wang
    npj Computational Materials, 5
  • [36] Higher-order topological solitonic insulators
    Li, Zhixiong
    Cao, Yunshan
    Yan, Peng
    Wang, Xiangrong
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [37] A signature index for third order topological insulators
    Drissi, L. B.
    Saidi, E. H.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (36)
  • [38] Higher-order topological insulators and superconductors
    Yan Zhong-Bo
    ACTA PHYSICA SINICA, 2019, 68 (22)
  • [39] Higher-Order Topological Insulators in Quasicrystals
    Chen, Rui
    Chen, Chui-Zhen
    Gao, Jin-Hua
    Zhou, Bin
    Xu, Dong-Hui
    PHYSICAL REVIEW LETTERS, 2020, 124 (03)
  • [40] Topological Bose-Mott Insulators in a One-Dimensional Optical Superlattice
    Zhu, Shi-Liang
    Wang, Z. -D.
    Chan, Y. -H.
    Duan, L. -M.
    PHYSICAL REVIEW LETTERS, 2013, 110 (07)