An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes

被引:218
作者
Sadri, Rad [1 ]
Ahmadi, Goodarz [2 ]
Togun, Hussein [1 ]
Dahari, Mahidzal [1 ]
Kazi, Salim Newaz [1 ]
Sadeghinezhad, Emad [1 ]
Zubir, Nashrul [1 ]
机构
[1] Univ Malaya, Fac Engn, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
[2] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA
来源
NANOSCALE RESEARCH LETTERS | 2014年 / 9卷
关键词
Multi-walled carbon nanotubes; MWCNTs; Nanofluids; Thermal conductivity; Viscosity; Dispersant; Surfactant; Gum arabic; SDBS; SDS; CONVECTIVE HEAT-TRANSFER; AQUEOUS SUSPENSIONS; ENHANCEMENT; PERFORMANCE; FLOW;
D O I
10.1186/1556-276X-9-151
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, there has been considerable interest in the use of nanofluids for enhancing thermal performance. It has been shown that carbon nanotubes (CNTs) are capable of enhancing the thermal performance of conventional working liquids. Although much work has been devoted on the impact of CNT concentrations on the thermo-physical properties of nanofluids, the effects of preparation methods on the stability, thermal conductivity and viscosity of CNT suspensions are not well understood. This study is focused on providing experimental data on the effects of ultrasonication, temperature and surfactant on the thermo-physical properties of multi-walled carbon nanotube (MWCNT) nanofluids. Three types of surfactants were used in the experiments, namely, gum arabic (GA), sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS). The thermal conductivity and viscosity of the nanofluid suspensions were measured at various temperatures. The results showed that the use of GA in the nanofluid leads to superior thermal conductivity compared to the use of SDBS and SDS. With distilled water as the base liquid, the samples were prepared with 0.5 wt.% MWCNTs and 0.25% GA and sonicated at various times. The results showed that the sonication time influences the thermal conductivity, viscosity and dispersion of nanofluids. The thermal conductivity of nanofluids was typically enhanced with an increase in temperature and sonication time. In the present study, the maximum thermal conductivity enhancement was found to be 22.31% (the ratio of 1.22) at temperature of 45 degrees C and sonication time of 40 min. The viscosity of nanofluids exhibited non-Newtonian shear-thinning behaviour. It was found that the viscosity of MWCNT nanofluids increases to a maximum value at a sonication time of 7 min and subsequently decreases with a further increase in sonication time. The presented data clearly indicated that the viscosity and thermal conductivity of nanofluids are influenced by the sonication time. Image analysis was carried out using TEM in order to observe the dispersion characteristics of all samples. The findings revealed that the CNT agglomerates breakup with increasing sonication time. At high sonication times, all agglomerates disappear and the CNTs are fragmented and their mean length decreases.
引用
收藏
页数:16
相关论文
共 43 条
[1]  
Alloush A., 1982, International Journal of Thermophysics, V3, P225, DOI 10.1007/BF00503318
[2]   The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid) [J].
Amrollahi, A. ;
Hamidi, A. A. ;
Rashidi, A. M. .
NANOTECHNOLOGY, 2008, 19 (31)
[3]   Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants [J].
Assael, MJ ;
Metaxa, IN ;
Arvanitidis, J ;
Christofilos, D ;
Lioutas, C .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2005, 26 (03) :647-664
[4]   Thermal conductivity of suspensions of carbon nanotubes in water [J].
Assael, MJ ;
Chen, CF ;
Metaxa, I ;
Wakeham, WA .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2004, 25 (04) :971-985
[5]   Stabilization of individual carbon nanotubes in aqueous solutions [J].
Bandyopadhyaya, R ;
Nativ-Roth, E ;
Regev, O ;
Yerushalmi-Rozen, R .
NANO LETTERS, 2002, 2 (01) :25-28
[6]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[7]   Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions [J].
Bystrzejewski, M. ;
Huczko, A. ;
Lange, H. ;
Gemming, T. ;
Buechner, B. ;
Ruemmeli, M. H. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 345 (02) :138-142
[8]   Properties of carbon nanotube nanofluids stabilized by cationic gemini surfactant [J].
Chen, Lifei ;
Xie, Huaqing .
THERMOCHIMICA ACTA, 2010, 506 (1-2) :62-66
[9]   Surfactant-free nanofluids containing double- and single-walled carbon nanotubes functionalized by a wet-mechanochemical reaction [J].
Chen, Lifei ;
Xie, Huaqing .
THERMOCHIMICA ACTA, 2010, 497 (1-2) :67-71
[10]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254