EXTREMAL SOLUTIONS OF AN INEQUALITY CONCERNING SUPPORTS OF PERMUTATION GROUPS AND PUNCTURED HADAMARD CODES

被引:0
作者
Pongracz, Andras [1 ]
机构
[1] Univ Debrecen, Inst Math, POB 400, H-4002 Debrecen, Hungary
关键词
code; anticode; support; maximum distance; AUTOMORPHISM-GROUPS; 2-WEIGHT; FIXITY;
D O I
10.5565/PUBLMAT6612202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If S is the degree of a permutation group and s is the maximum degree of its elements, then S <= 2s - 2. We show that this inequality is sharp for some permutation group if and only if s is a power of 2, and then there is exactly one such permutation group up to isomorphism. The unique example is an elementary Abelian 2-group that arises from a punctured Hadamard code. Then we discuss the solutions of S = 2s - 3 and S = 2s - 4.
引用
收藏
页码:57 / 75
页数:19
相关论文
共 21 条
[1]   Limit laws and automorphism groups of random nonrigid structures [J].
Ahlman, Ove ;
Koponen, Vera .
JOURNAL OF LOGIC AND ANALYSIS, 2015, 7
[2]   A BOUND FOR THE MAXIMUM WEIGHT OF A LINEAR CODE [J].
Ball, Simeon ;
Blokhuis, Aart .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) :575-583
[3]  
Betten A., 2006, Ser. Algorithms and Computation in Mathematics), V18, DOI [10.1007/3-540-31703-1, DOI 10.1007/3-540-31703-1]
[4]  
Bonisoli A., 1984, ARS COMBINATORIA, V18, P181
[5]  
Cameron P. J., 1980, EUROPEAN J COMBIN, V1, P91, DOI [10.1016/S0195-6698(80)80043-6, DOI 10.1016/S0195-6698(80)80043-6]
[6]   A Class of Two-Weight and Three-Weight Codes and Their Applications in Secret Sharing [J].
Ding, Kelan ;
Ding, Cunsheng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) :5835-5842
[7]  
Erdo P., 1963, Acta Math. Acad. Scien. Hung., V14, P295
[8]   NUMBER OF FINITE RELATIONAL STRUCTURES [J].
FAGIN, R .
DISCRETE MATHEMATICS, 1977, 19 (01) :17-21
[9]   A BOUND FOR ERROR-CORRECTING CODES [J].
GRIESMER, JH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (05) :532-542
[10]   Typical automorphism groups of finite nonrigid structures [J].
Koponen, Vera .
ARCHIVE FOR MATHEMATICAL LOGIC, 2015, 54 (5-6) :571-586