Stabilizing all geometric moduli in heterotic Calabi-Yau vacua

被引:71
作者
Anderson, Lara B. [1 ]
Gray, James [2 ,3 ]
Lukas, Andre [4 ]
Ovrut, Burt [1 ]
机构
[1] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[2] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[3] Max Planck Inst Phys Theorie, D-80805 Munich, Germany
[4] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 10期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
SUPERSYMMETRY BREAKING; CONFIGURATIONS; PAIR;
D O I
10.1103/PhysRevD.83.106011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a scenario to stabilize all geometric moduli-that is, the complex structure, Kahler moduli, and the dilaton-in smooth heterotic Calabi-Yau compactifications without Neveu-Schwarz three-form flux. This is accomplished using the gauge bundle required in any heterotic compactification, whose perturbative effects on the moduli are combined with nonperturbative corrections. We argue that, for appropriate gauge bundles, all complex structure and a large number of other moduli can be perturbatively stabilized-in the most restrictive case, leaving only one combination of Kahler moduli and the dilaton as a flat direction. At this stage, the remaining moduli space consists of Minkowski vacua. That is, the perturbative superpotential vanishes in the vacuum without the necessity to fine-tune flux. Finally, we incorporate nonperturbative effects such as gaugino condensation and/or instantons. These are strongly constrained by the anomalous U(1) symmetries, which arise from the required bundle constructions. We present a specific example, with a consistent choice of nonperturbative effects, where all remaining flat directions are stabilized in an anti-de Sitter vacuum.
引用
收藏
页数:14
相关论文
共 59 条
[51]   Nonstandard embedding and five-branes in heterotic M theory [J].
Lukas, A ;
Ovrut, BA ;
Waldram, D .
PHYSICAL REVIEW D, 1999, 59 (10) :1-17
[52]  
Lukas A, 2000, J HIGH ENERGY PHYS
[53]   The ten-dimensional effective action of strongly coupled heterotic string theory [J].
Lukas, A ;
Ovrut, BA ;
Waldram, D .
NUCLEAR PHYSICS B, 1999, 540 (1-2) :230-246
[54]   G-structures and domain walls in heterotic theories [J].
Lukas, Andre ;
Matti, Cyril .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (01)
[55]   On moduli stabilisation and de Sitter vacua in MSSM heterotic orbifolds [J].
Parameswaran, Susha L. ;
Ramos-Sanchez, Saul ;
Zavala, Ivonne .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (01)
[56]  
Sharpe E.R., 1999, ADV THEOR MATH PHYS, V2, P1441, DOI [10.4310/ATMP.1998.v2.n6.a7[hep-th/9810064, DOI 10.4310/ATMP.1998.V2.N6.A7[HEP-TH/9810064]
[57]  
Wess J., 1992, SUPERSYMMETRY SUPERG, P259
[58]   Strong coupling expansion of Calabi-Yau compactification [J].
Witten, E .
NUCLEAR PHYSICS B, 1996, 471 (1-2) :135-158
[59]  
[No title captured]