Stabilizing all geometric moduli in heterotic Calabi-Yau vacua

被引:70
作者
Anderson, Lara B. [1 ]
Gray, James [2 ,3 ]
Lukas, Andre [4 ]
Ovrut, Burt [1 ]
机构
[1] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[2] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[3] Max Planck Inst Phys Theorie, D-80805 Munich, Germany
[4] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 10期
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
SUPERSYMMETRY BREAKING; CONFIGURATIONS; PAIR;
D O I
10.1103/PhysRevD.83.106011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a scenario to stabilize all geometric moduli-that is, the complex structure, Kahler moduli, and the dilaton-in smooth heterotic Calabi-Yau compactifications without Neveu-Schwarz three-form flux. This is accomplished using the gauge bundle required in any heterotic compactification, whose perturbative effects on the moduli are combined with nonperturbative corrections. We argue that, for appropriate gauge bundles, all complex structure and a large number of other moduli can be perturbatively stabilized-in the most restrictive case, leaving only one combination of Kahler moduli and the dilaton as a flat direction. At this stage, the remaining moduli space consists of Minkowski vacua. That is, the perturbative superpotential vanishes in the vacuum without the necessity to fine-tune flux. Finally, we incorporate nonperturbative effects such as gaugino condensation and/or instantons. These are strongly constrained by the anomalous U(1) symmetries, which arise from the required bundle constructions. We present a specific example, with a consistent choice of nonperturbative effects, where all remaining flat directions are stabilized in an anti-de Sitter vacuum.
引用
收藏
页数:14
相关论文
共 59 条
[1]   Monad bundles in heterotic string compactifications [J].
Anderson, Lara ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07)
[2]   Heterotic compactification, an algorithmic approach [J].
Anderson, Lara B. ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (07)
[3]   Stabilizing the complex structure in heterotic Calabi-Yau vacua [J].
Anderson, Lara B. ;
Gray, James ;
Lukas, Andre ;
Ovrut, Burt .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (02)
[4]   Yukawa Couplings in Heterotic Compactification [J].
Anderson, Lara B. ;
Gray, James ;
Grayson, Dan ;
He, Yang-Hui ;
Lukas, Andre .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (01) :95-127
[5]   Exploring positive monad bundles and a new heterotic standard model [J].
Anderson, Lara B. ;
Gray, James ;
He, Yang-Hui ;
Lukas, Andre .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (02)
[6]   Stability walls in heterotic theories [J].
Anderson, Lara B. ;
Gray, James ;
Lukas, Andre ;
Ovrut, Burt .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09)
[7]   The edge of supersymmetry: Stability walls in heterotic theory [J].
Anderson, Lara B. ;
Gray, James ;
Lukas, Andre ;
Ovrut, Burt .
PHYSICS LETTERS B, 2009, 677 (3-4) :190-194
[8]  
ANDERSON LB, 2008, THESIS U OXFORD
[9]  
ANDERSON LB, ATIYAH CLASSES UNPUB
[10]  
ANDERSON LB, FORTSCHR PH IN PRESS