Spectroscopic analysis of Nd3+-doped cadmium-vanadate invert glasses for near-infrared laser applications

被引:20
作者
Soriano-Romero, O. [1 ]
Espinosa-Ceron, M. Y. [1 ]
Carmona-Tellez, S. [2 ]
Lira, A. [3 ]
Caldino, U. [4 ]
Lozada-Morales, R. [1 ]
Meza-Rocha, A. N. [2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Postgrad Fis Aplicada, Fac Ciencias Fisicomatemat, Av San Claudio & Av 18 Sur, Puebla 72570, Pue, Mexico
[2] Benemerita Univ Autonoma Puebla, CONACyT, Fac Ciencias Fisicomatemat, Postgrad Fis Aplicada, Av San Claudio & Av 18 Sur, Puebla 72570, Pue, Mexico
[3] Univ Autonoma Estado Mexico, Fac Ciencias, Dept Fis, Toluca 50000, Mexico
[4] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Cdmx 09340, Mexico
关键词
Judd-Ofelt analysis; Near infrared laser applications; PHOSPHATE-GLASSES; BORATE GLASSES; OPTICAL-PROPERTIES; ENERGY-TRANSFER; REDDISH-ORANGE; ND3+ IONS; EMISSION; DY3+; TRANSITION; DEPENDENCE;
D O I
10.1016/j.jnoncrysol.2021.121085
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nd3+ activated CdO-V2O5 invert glasses were synthesized by the well-stablished melt quenching technique, using starting proportions of 95.0 and 5.0 mol% of CdO and V2O5, respectively. The XRD patterns revealed that the glass system remains amorphous up to 4.0 mol% of Nd3+. Such fact was mainly attributed to the low V2O5 content, which avoided the segregation of additional phases. The minimal addition of 0.1 mol% of Nd3+ reduced the direct and indirect glass bandgap energies from 2.79 to 2.66 eV, and from 2.48 to 2.13 eV, respectively. For higher Nd3+ contents, the bandgap energy was recovered, reaching values of 2.78 and 2.40 eV for direct and indirect allowed transitions, respectively. This fact was associated with a Burstein-Moss like effect, observed in semiconductors highly doped. The tail of the absorption edge revealed that the Urbach energy systematically grows with the addition of Nd3+, because of the creation of localized states into the bandgap. The Judd-Ofelt (JO) parameters obtained by least-square method from the experimental and theoretical oscillator strengths, were found in the Omega(2) = 5.24-11.04 x 10(-20) cm(2), Omega(4) = 2.26-4.47 x 10(-20) cm(2), and Omega(6) = 2.85-6.28 x 10(-20) cm(2) range. Such values are close to those reported in other popular glass systems. The stimulated emission cross-section peak (sigma(p)) values calculated for the glass sample doped with 2.0 mol% resulted to be 0.26 x 10(-20) cm(2) (Nd3+: F-4(3/2) -> I-4(9/2)) and 0.81 x 10(-20) cm(2) (Nd3+: F-4(3/2) -> I-4(11/2)). The Nd3+ emission spectra, recorded upon 585 nm excitation (Nd3+: I-4(9/2) -> (4)G(5/2) + (2)G(7/2)), showed the near-infrared Nd3+ emission bands at 881 nm (Nd3+: F-4(3/2) -> I-4(9/2)), 1063 nm (Nd3+: F-4(3/2) -> I-4(11/2)) and 1341 nm (Nd3+: F-4(3/2) -> I-4(13/2)), being dominated for that coming from the Nd3+: F-4(3/2) -> I-4(11/2) transition. The overall emission reached the optimum intensity at 2.0 mol% of Nd3+, with a maximum quantum efficiency (eta(QE)) of 0.23. From the emission spectra important laser parameters such as gain bandwidth (sigma(EMI)(lambda(p)) x Delta lambda(em)) and optical gain (sigma(EMI)(lambda(p)) x tau(R)), were determined for the sample with the highest eta(QE) value. The sigma(EMI)(lambda(p)) x Delta lambda(em) values resulted to be 11.3 and 32.0 x 10(-27) cm(3) for the Nd3+: F-4(3/2) -> I-4(9/2), (11/2) transitions, respectively. The sigma(EMI)(lambda(p)) x tau(R) parameter values were 11.1 and 35.3 x 10(-25) cm(2)s for Nd3+: F-4(3/2) -> I-4(9/2,11/2) transitions, respectively. The Inokuti-Hirayama model suggested that the Nd3+ cross-relaxation process might be dominated by an electric dipole-dipole interaction, inside Nd3+-Nd3+ clusters.
引用
收藏
页数:8
相关论文
共 40 条
[21]  
Kaminskii A.A., 1990, Laser Crystals: Their Physics and Properties, DOI [10.1007/978-3-540-70749-3, DOI 10.1007/978-3-540-70749-3]
[22]   Spectroscopic and glass transition investigations on Nd3+-doped NaF-Na2O-B2O3 glasses [J].
Karthikeyan, B ;
Mohan, S .
MATERIALS RESEARCH BULLETIN, 2004, 39 (10) :1507-1515
[23]   Optical properties of Nd doped Bi2O3-PbOGa2O3 glasses [J].
Kassab, LRP ;
Tatumi, SH ;
Mendes, CMS ;
Courrol, LC ;
Wetter, NU .
OPTICS EXPRESS, 2000, 6 (04) :104-108
[24]   Spectroscopic investigations of Nd3+ doped gadolinium calcium silica borate glasses for the NIR emission at 1059 nm [J].
Kesavulu, C. R. ;
Kim, H. J. ;
Lee, S. W. ;
Kaewkhao, J. ;
Wantana, N. ;
Kaewnuam, E. ;
Kothan, S. ;
Kaewjaeng, S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 :590-598
[25]   Spectral properties of Nd3+ ions in the new fluoride glasses with small additives of the phosphates [J].
Kolobkova, E. ;
Alkhlef, A. ;
Dinh, B. M. ;
Yasukevich, A. S. ;
Dernovich, O. P. ;
Kuleshov, N., V ;
Nikonorov, N. .
JOURNAL OF LUMINESCENCE, 2019, 206 :523-529
[26]   Nd3+-doped heavy metal oxide based multicomponent borate glasses for 1.06 μm solid-state NIR laser and O-band optical amplification applications [J].
Lakshminarayana, G. ;
Kaky, Kawa M. ;
Baki, S. O. ;
Lira, A. ;
Meza-Rocha, A. N. ;
Falcony, C. ;
Caldino, U. ;
Kityk, I. V. ;
Mendez-Blas, A. ;
Abas, A. F. ;
Alresheedi, M. T. ;
Mahdi, M. A. .
OPTICAL MATERIALS, 2018, 78 :142-159
[27]   Nd3+-doped TeO2-PbF2-AlF3 glasses for laser applications [J].
Lalla, E. A. ;
Rodriguez-Mendoza, U. R. ;
Lozano-Gorrin, A. D. ;
Sanz-Arranz, A. ;
Rull, F. ;
Lavin, V. .
OPTICAL MATERIALS, 2016, 51 :35-41
[28]   Spectroscopic investigations of near-infrared emission from Nd3+-doped zinc-phosphate glasses: Judd-Ofelt evaluation [J].
Mahraz, Zahra Ashur Said ;
Sazali, E. S. ;
Sahar, M. R. ;
Amran, Nur Ulfah ;
Yaacob, S. N. S. ;
Aziz, Siti Maisarah ;
Mawlud, S. Q. ;
Noor, F. M. ;
Harun, A. N. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2019, 509 :106-114
[29]   Spectroscopic investigations of Nd3+ ions in niobium phosphate glasses for laser applications [J].
Manasa, P. ;
Srihari, T. ;
Basavapoornima, Ch ;
Joshi, A. S. ;
Jayasankar, C. K. .
JOURNAL OF LUMINESCENCE, 2019, 211 :233-242
[30]   Effect of Nd2O3and Na2O concentration on physical and spectroscopic properties of TeO2-Bi2O3-ZnO-Na2O-Nd2O3glasses [J].
Marzuki, Ahmad ;
Pramuda, Adi ;
Fausta, Devara Ega .
MATERIALS RESEARCH EXPRESS, 2020, 7 (06)