Rapid alternating stress is formed in structure subjected to harsh thermal-acoustic loads, which will affect fatigue performance and reduce fatigue life seriously. First, fatigue experiment of superalloy thin-walled structure was carried out to obtain fatigue damage location and failure time of the experiment specimen, and S-N curves of superalloy thin-walled structure at 723 K were fitted. Then, dynamic response simulation of superalloy thin-walled structure under the same load as experiment was implemented, and fatigue life was estimated based on the fatigue life prediction model which mainly included: improved rain-flow counting method, Morrow average stress model and Miner linear cumulative damage theory. Further, comparisons between simulation solutions and experimental results achieved a consistency, which verified the validity of the Fatigue Life Prediction Model (FLPM). Moreover, taking a rectangle plate as the analysis object, the distributions of Fain-low circulation blocks and damage levels of the structure were discussed respectively. Finally, current research indicates that in pre-buckling the structure is in softened area and fatigue life decreases with the increase of temperature; in post-buckling the structure is in hardened area and fatigue life increases with the increase of temperature within a certain range. (C) 2019 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.