A generalization of Numerov's method for the numerical solution of the Schrodinger equation in two dimensions

被引:0
作者
Konguetsof, A [1 ]
Avdelas, G [1 ]
Simos, TE [1 ]
机构
[1] Democritus Univ Thrace, Sect Math, Dept Civil Engn, Sch Engn, GR-67100 Xanthi, Greece
来源
INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, PROCEEDINGS | 1999年
关键词
two-dimensional Schrodinger equation; finite differences; Numerov method; Coulombian potential;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper a generalization of the well known Numerov's method is derived. The local truncation error of the new method is presented and the result of the application of the new method to a two dimensional Schrodinger equation in an equal space discetization is obtained. Numerical illustrations show the efficiency of the new method compared with the known 5 point formula in two Coulombian potentials.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 22 条
[1]  
Allison A. C., 1970, Journal of Computational Physics, V6, P378, DOI 10.1016/0021-9991(70)90037-9
[2]   Embedded methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (02) :85-102
[3]   P-stability and exponential-fitting methods for y''=f(x, y) [J].
Coleman, JP ;
Ixaru, LG .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :179-199
[5]   NUMERICAL-SOLUTION OF SCHROEDINGERS RADIAL EQUATION [J].
HAJJ, FY ;
KOBEISSE, H ;
NASSIF, NR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1974, 16 (02) :150-159
[7]   Operations on oscillatory functions [J].
Ixaru, LG .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 105 (01) :1-19
[8]   Four-step exponential-fitted methods for nonlinear physical problems [J].
Ixaru, LG ;
VandenBerghe, G ;
DeMeyer, H ;
VanDaele, M .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 100 (1-2) :56-70
[9]   PIECEWISE PERTURBATION-METHODS FOR CALCULATING EIGENSOLUTIONS OF A COMPLEX OPTICAL-POTENTIAL [J].
IXARU, LG ;
RIZEA, M ;
VERTSE, T .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 85 (02) :217-230
[10]   Explicit sixth-order Bessel and Neumann fitted method for the numerical solution of the Schrodinger equation [J].
Simos, TE .
COMPUTERS IN PHYSICS, 1998, 12 (06) :635-640