A regression framework to uncover pleiotropy in large-scale electronic health record data

被引:7
作者
Li, Ruowang [1 ,2 ]
Duan, Rui [2 ]
Kember, Rachel L. [3 ,4 ]
Rader, Daniel J. [3 ,6 ]
Damrauer, Scott M. [4 ,6 ]
Moore, Jason H. [1 ,2 ]
Chen, Yong [1 ,2 ]
机构
[1] Univ Penn, Perelman Sch Med, Inst Biomed Informat, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Dept Genet, Philadelphia, PA 19104 USA
[4] Corporal Michael J Crescenz VA Med Ctr, Philadelphia, PA USA
[5] Regeneron Genet Ctr, Tarrytown, NY USA
[6] Univ Penn, Perelman Sch Med, Dept Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
pleiotropy; electronic health record; reduced rank regression; cardiovascular disease; mental disorder; COMPLEX TRAITS; ASSOCIATION; HERITABILITY; DISCOVERY;
D O I
10.1093/jamia/ocz084
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: Pleiotropy, where 1 genetic locus affects multiple phenotypes, can offer significant insights in understanding the complex genotype-phenotype relationship. Although individual genotype-phenotype associations have been thoroughly explored, seemingly unrelated phenotypes can be connected genetically through common pleiotropic loci or genes. However, current analyses of pleiotropy have been challenged by both methodologic limitations and a lack of available suitable data sources. Materials and Methods: In this study, we propose to utilize a new regression framework, reduced rank regression, to simultaneously analyze multiple phenotypes and genotypes to detect pleiotropic effects. We used a large-scale biobank linked electronic health record data from the Penn Medicine BioBank to select 5 cardiovascular diseases (hypertension, cardiac dysrhythmias, ischemic heart disease, congestive heart failure, and heart valve disorders) and 5 mental disorders (mood disorders; anxiety, phobic and dissociative disorders; alcohol-related disorders; neurological disorders; and delirium dementia) to validate our framework. Results: Compared with existing methods, reduced rank regression showed a higher power to distinguish known associated single-nucleotide polymorphisms from random single-nucleotide polymorphisms. In addition, genome-wide gene-based investigation of pleiotropy showed that reduced rank regression was able to identify candidate genetic variants with novel pleiotropic effects compared to existing methods. Conclusion: The proposed regression framework offers a new approach to account for the phenotype and genotype correlations when identifying pleiotropic effects. By jointly modeling multiple phenotypes and genotypes together, the method has the potential to distinguish confounding from causal genotype and phenotype associations.
引用
收藏
页码:1083 / 1090
页数:8
相关论文
共 38 条
[1]   Improved Detection of Common Variants Associated with Schizophrenia by Leveraging Pleiotropy with Cardiovascular-Disease Risk Factors [J].
Andreassen, Ole A. ;
Djurovic, Srdjan ;
Thompson, Wesley K. ;
Schork, Andrew J. ;
Kendler, Kenneth S. ;
O'Donovan, Michael C. ;
Rujescu, Dan ;
Werge, Thomas ;
van de Bunt, Martijn ;
Morris, Andrew P. ;
McCarthy, Mark I. ;
Roddey, J. Cooper ;
McEvoy, Linda K. ;
Desikan, Rahul S. ;
Dale, Anders M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 92 (02) :197-209
[2]  
[Anonymous], THESIS
[3]  
Chen K., 2011, THESIS, DOI [10.17077/etd.tmux00sn, DOI 10.17077/ETD.TMUX00SN]
[4]   Reduced rank stochastic regression with a sparse singular value decomposition [J].
Chen, Kun ;
Chan, Kung-Sik ;
Stenseth, Nils Chr. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2012, 74 :203-221
[5]   Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index [J].
Cronin, Robert M. ;
Field, Julie R. ;
Bradford, Yuki ;
Shaffer, Christian M. ;
Carroll, Robert J. ;
Mosley, Jonathan D. ;
Bastarache, Lisa ;
Edwards, Todd L. ;
Hebbring, Scott J. ;
Lin, Simon ;
Hindorff, Lucia A. ;
Crane, Paul K. ;
Pendergrass, Sarah A. ;
Ritchie, Marylyn D. ;
Crawford, Dana C. ;
Pathak, Jyotishman ;
Bielinski, Suzette J. ;
Carrell, David S. ;
Crosslin, David R. ;
Ledbetter, David H. ;
Carey, David J. ;
Tromp, Gerard ;
Williams, Marc S. ;
Larson, Eric B. ;
Jarvik, Gail P. ;
Peissig, Peggy L. ;
Brilliant, Murray H. ;
McCarty, Catherine A. ;
Chute, Christopher G. ;
Kullo, Iftikhar J. ;
Bottinger, Erwin ;
Chisholm, Rex ;
Smith, Maureen E. ;
Roden, Dan M. ;
Denny, Joshua C. .
FRONTIERS IN GENETICS, 2014, 5
[6]   PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations [J].
Denny, Joshua C. ;
Ritchie, Marylyn D. ;
Basford, Melissa A. ;
Pulley, Jill M. ;
Bastarache, Lisa ;
Brown-Gentry, Kristin ;
Wang, Deede ;
Masys, Dan R. ;
Roden, Dan M. ;
Crawford, Dana C. .
BIOINFORMATICS, 2010, 26 (09) :1205-1210
[7]   Beyond GWASs: Illuminating the Dark Road from Association to Function [J].
Edwards, Stacey L. ;
Beesley, Jonathan ;
French, Juliet D. ;
Dunning, Alison M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (05) :779-797
[8]  
Fisher R, 1930, GENETICAL THEORY NAT
[9]   Genetic pleiotropy in complex traits and diseases: implications for genomic medicine [J].
Gratten, Jacob ;
Visscher, Peter M. .
GENOME MEDICINE, 2016, 8
[10]  
Hartley Stephen W., 2012, Frontiers in Genetics, V3, P176, DOI 10.3389/fgene.2012.00176