The full Steiner tree problem

被引:42
作者
Lu, CL
Tang, CY [1 ]
Lee, RCT
机构
[1] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu 300, Taiwan
[2] Natl Chiao Tung Univ, Dept Biol Sci & Technol, Hsinchu 300, Taiwan
[3] Natl Chi Nan Univ, Dept Comp Sci & Informat Engn, Puli, Nantou Hsien, Taiwan
关键词
full Steiner tree problem; phylogenetic tree; evolutionary tree; NP-complete; MAX SNP-hard; approximation algorithm;
D O I
10.1016/S0304-3975(03)00209-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Motivated by the reconstruction of phylogenetic tree in biology, we study the full Steiner tree problem in this paper. Given a complete graph G = (V, E) with a length function on E and a proper subset R subset of V, the problem is to find a full Steiner tree of minimum length in G, which is a kind of Steiner tree with all the vertices of R as its leaves. In this paper, we show that this problem is NP-complete and MAX SNP-hard, even when the lengths of the edges are restricted to either I or 2. For the instances with lengths either I or 2, we give a 8/5-approximation algorithm to find an approximate solution for the problem. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 20 条
[1]  
[Anonymous], TUTORIAL PHYLOGENETI
[2]  
[Anonymous], 2000, ADV STEINER TREES
[3]   Proof verification and the hardness of approximation problems [J].
Arora, S ;
Lund, C ;
Motwani, R ;
Sudan, M ;
Szegedy, M .
JOURNAL OF THE ACM, 1998, 45 (03) :501-555
[4]  
Ausiello G, 1999, COMPLEXITY APPROXIMA, DOI DOI 10.1007/978-3-642-58412-1
[5]   THE STEINER PROBLEM WITH EDGE LENGTH-1 AND LENGTH-2 [J].
BERN, M ;
PLASSMANN, P .
INFORMATION PROCESSING LETTERS, 1989, 32 (04) :171-176
[6]   The k-Steiner ratio in graphs [J].
Borchers, A ;
Du, DZ .
SIAM JOURNAL ON COMPUTING, 1997, 26 (03) :857-869
[7]  
Cheng X., 2001, STEINER TREES IND
[8]  
Foulds L.R., 1982, ADV APPL MATH, V3, P43, DOI DOI 10.1016/S0196-8858(82)80004-3
[9]   COMPLEXITY OF COMPUTING STEINER MINIMAL TREES [J].
GAREY, MR ;
GRAHAM, RL ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :835-859
[10]   RECTILINEAR STEINER TREE PROBLEM IS NP-COMPLETE [J].
GAREY, MR ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :826-834