Multidimensional cyclic codes and Artin-Schreier type hypersurfaces over finite fields

被引:18
作者
Guneri, Cem [2 ]
Ozbudak, Feffuh [1 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[2] Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey
关键词
multidimensional cyclic code; Artin-Schreier type hypersurface; Deligne's inequality; Hasse-Weil-Serre inequality;
D O I
10.1016/j.ffa.2006.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a trace representation for multidimensional cyclic codes via Delsarte's theorem. This relates the weights of the codewords to the number of affine rational points of Artin-Schreier type hypersurfaces over finite fields. Using Deligne's and Hasse-Weil-Serre inequalities we get bounds on the minimum distance. Comparison of the bounds is made and illustrated by examples. Some applications of our results are given. We obtain a bound on certain character sums over F-2 which gives better estimates than Deligne's inequality in some cases. We also improve the minimum distance bounds of Moreno-Kumar on p-ary subfield subcodes of generalized Reed-Muller codes for some parameters. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:44 / 58
页数:15
相关论文
共 19 条
[1]   THE N-DIMENSIONAL KEY EQUATION AND A DECODING APPLICATION [J].
CHABANNE, H ;
NORTON, GH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (01) :200-203
[2]  
DELIGNE P, 1978, LECT NOTES MATH, V569, P168
[3]   ON GENERALIZED REED-MULLER CODES AND THEIR RELATIVES [J].
DELSARTE, P ;
GOETHALS, JM ;
MACWILLI.FJ .
INFORMATION AND CONTROL, 1970, 16 (05) :403-&
[4]   SUBFIELD SUBCODES OF MODIFIED REED-SOLOMON CODES [J].
DELSARTE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (05) :575-576
[5]   ELEMENTARY ABELIAN P-EXTENSIONS OF ALGEBRAIC FUNCTION-FIELDS [J].
GARCIA, A ;
STICHTENOTH, H .
MANUSCRIPTA MATHEMATICA, 1991, 72 (01) :67-79
[6]   Artin-Schreier curves and weights of two-dimensional cyclic codes [J].
Güneri, C .
FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (04) :481-505
[7]  
GUNERI C, 2001, THESIS LOUISIANA ST
[8]  
Ikai T., 1975, ELECT COMMUN JAPAN A, V57A, P27
[9]   THEORY OF 2-DIMENSIONAL CYCLIC CODES [J].
IMAI, H .
INFORMATION AND CONTROL, 1977, 34 (01) :1-21
[10]   THE CONCATENATED STRUCTURE OF CYCLIC AND ABELIAN CODES [J].
JENSEN, JM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (06) :788-793