Conjugate points and closed geodesic arcs on convex surfaces

被引:0
作者
Zamfirescu, T [1 ]
机构
[1] UNIV DORTMUND,INST MATH,D-44221 DORTMUND,GERMANY
关键词
conjugate points; cut locus; closed geodesic arcs; Baire categories;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper discusses conjugate points on the geodesics of convex surfaces. It establishes their relationship with the cut locus. It shows the possibility of having many geodesics with conjugate points at very large distances from each other. It also shows that on many surfaces there are arbitrarily many closed geodesic arcs originating and ending at a common point. To achieve these goals, Baire category methods are employed.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [31] THE CONJUGATE POINTS OF CP∞ AND THE ZEROES OF BERGMAN KERNEL
    Lu Qikeng
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (03) : 480 - 492
  • [32] Conjugate Points Along Kolmogorov Flows on the Torus
    Alice Le Brigant
    Stephen C. Preston
    Journal of Mathematical Fluid Mechanics, 2024, 26
  • [34] Conjugate points of dynamic pairs and control systems
    Jakubczyk, B.
    Krynski, W.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2025, 31
  • [35] A conjugate points theory for a nonlinear programming problem
    Kawasaki, H
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (01) : 54 - 63
  • [36] On conjugate points and the Leitmann equivalent problem approach
    Wagener, F. O. O.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) : 1266 - 1276
  • [37] Conjugate and cut points in ideal fluid motion
    Drivas, Theodore D.
    Misiolek, Gerard
    Shi, Bin
    Yoneda, Tsuyoshi
    ANNALES MATHEMATIQUES DU QUEBEC, 2022, 46 (01): : 207 - 225
  • [38] Conjugate and cut points in ideal fluid motion
    Theodore D. Drivas
    Gerard Misiołek
    Bin Shi
    Tsuyoshi Yoneda
    Annales mathématiques du Québec, 2022, 46 : 207 - 225
  • [39] Conjugate Points Along Kolmogorov Flows on the Torus
    Le Brigant, Alice
    Preston, Stephen C.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (02)
  • [40] Conjugate points on a type of Kähler manifolds
    Wei Ming Liu
    Fu Sheng Deng
    Acta Mathematica Sinica, English Series, 2013, 29 : 1175 - 1184