Protecting clean critical points by local disorder correlations

被引:32
作者
Hoyos, J. A. [1 ]
Laflorencie, N. [2 ]
Vieira, A. P. [3 ]
Vojta, T. [4 ]
机构
[1] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Paulo, Brazil
[2] Univ Paris 11, Phys Solides Lab, CNRS, UMR 8502, F-91405 Orsay, France
[3] Univ Sao Paulo, Inst Fis, BR-05314970 Sao Paulo, Brazil
[4] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA
基金
美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
TRANSVERSE-FIELD; CONDUCTING POLYMERS; RANDOM IMPURITIES; CRITICAL-BEHAVIOR; ISING-MODEL; SYSTEMS; POLYANILINE; DEFECTS; QUANTUM; CHAINS;
D O I
10.1209/0295-5075/93/30004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Copyright (C) EPLA, 2011
引用
收藏
页数:5
相关论文
共 32 条
[1]   Defects in correlated metals and superconductors [J].
Alloul, H. ;
Bobroff, J. ;
Gabay, M. ;
Hirschfeld, P. J. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :45-108
[2]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[3]   Increasing entanglement through engineered disorder in the random Ising chain [J].
Binosi, D. ;
De Chiara, G. ;
Montangero, S. ;
Recati, A. .
PHYSICAL REVIEW B, 2007, 76 (14)
[4]   Infinite-randomness fixed points for chains of non-Abelian quasiparticles [J].
Bonesteel, N. E. ;
Yang, Kun .
PHYSICAL REVIEW LETTERS, 2007, 99 (14)
[5]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[6]  
Cardy J. L, 1996, CAMBRIDGE LECT NOTES
[7]   FINITE-SIZE SCALING AND CORRELATION LENGTHS FOR DISORDERED-SYSTEMS [J].
CHAYES, JT ;
CHAYES, L ;
FISHER, DS ;
SPENCER, T .
PHYSICAL REVIEW LETTERS, 1986, 57 (24) :2999-3002
[8]   MAGNETIC-IMPURITIES IN HALF-INTEGER-SPIN HEISENBERG ANTIFERROMAGNETIC CHAINS [J].
EGGERT, S ;
AFFLECK, I .
PHYSICAL REVIEW B, 1992, 46 (17) :10866-10883
[9]   CRITICAL-BEHAVIOR OF RANDOM TRANSVERSE-FIELD ISING SPIN CHAINS [J].
FISHER, DS .
PHYSICAL REVIEW B, 1995, 51 (10) :6411-6461
[10]   NONANALYTIC BEHAVIOR ABOVE CRITICAL POINT IN A RANDOM ISING FERROMAGNET [J].
GRIFFITHS, RB .
PHYSICAL REVIEW LETTERS, 1969, 23 (01) :17-+