2014 DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION (DATE)
|
2014年
关键词:
COMPLEXITY REDUCTION SCHEME;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
The High Efficiency Video Coding (HEVC) standard aims at providing similar to 50% better compression compared to its predecessor (H.264) at the cost of high computational complexity. To enable HEVC video encoding in real-time scenarios, special coding support for parallelization is provided in HEVC that can be exploited by many-core systems. In this work, we present a HEVC software architecture where a video frame is adaptively divided into independent video frame regions (i.e. so-called video tiles) which are processed concurrently on multiple cores. By balancing the workload of each video tile mapped to a particular core, the total power consumption of a system is reduced (through dynamically scaling the operating frequency) under a given frame-rate constraint. We also exploit user tolerance to further curtail the HEVC workload with insignificant video quality degradation. Experimental results illustrate that the proposed approach results in similar to 43% power savings on a many-core system.