Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in Internet of Things and self-powered wind speed sensor

被引:124
作者
Fan, Xueming [1 ]
He, Jian [1 ,2 ]
Mu, Jiliang [1 ]
Qian, Jichao [1 ]
Zhang, Ning [1 ]
Yang, Changjun [1 ]
Hou, Xiaojuan [1 ]
Geng, Wenping [1 ]
Wang, Xiangdong [3 ]
Chou, Xiujian [1 ]
机构
[1] North Univ China, Sci & Technol Elect Test & Measurement Lab, Taiyuan 030051, Peoples R China
[2] Taiyuan Heavy Machinery Grp Co LTD, Taiyuan 030024, Peoples R China
[3] Sports Sci Res Inst State Sports Gen Adm, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 国家重点研发计划;
关键词
Triboelectric; Electromagnetic; Hybrid nanogenerator; Wind energy; Wireless monitoring system; Wind speed sensor; ENERGY; BAND;
D O I
10.1016/j.nanoen.2019.104319
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In recent years, as the world has been warming, frequent natural disasters are posing a great threat to humans. By combining 5G technology with the Internet of Things (IoT) concept and increasing the placement of wireless sensor networks, disaster-prone points can be closely monitored. However, regular replacement of the traditional chemical batteries for devices that are a part of the developing IoT remains a significant challenge, especially in remote areas. In this article, we propose and report a hybrid energy harvester used in wind energy harvesting. The device consists of a rotating body and a sliding body. The electromagnetic generators (EMGs) in the rotating body and the triboelectric nanogenerators (TENGs) on the sliding body form the entirety of the power generating mechanism, and all generated units are completely sealed in the device box, which is isolated from the harsh environment. This paper not only systematically studies the influence of dielectric material types and sizes on the output performance of TENGs, but also studies the output performance of this device under different wind speeds. The results show that when the wind speed is not less than 4 m/s, the energy harvester can convert wind energy into electricity. The output performance of TENGs and EMGs increases with increasing wind speed, and the voltages of the TENG and the EMG are 416 V and 63.2 V at the 15 m/s wind speed, respectively. When the wind speed is 9 m/s, the maximum output power of TENG and EMG are 0.36 mW and 18.6 mW, respectively. The device can charge a capacitor of 1000 mu F to 19.8 V in 30s. By supplying power to electronic devices and wireless monitoring systems including temperature sensors and humidity sensors, it is shown that the creation and implementation of such an energy harvester is practical and has a significant impact on promoting the development of IoT. Meanwhile, it can be used as a self-powered sensor to detected wind speed by analyzing the frequency of TENG output voltage.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications [J].
Al-Fuqaha, Ala ;
Guizani, Mohsen ;
Mohammadi, Mehdi ;
Aledhari, Mohammed ;
Ayyash, Moussa .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2015, 17 (04) :2347-2376
[2]  
[Anonymous], [No title captured]
[3]   High efficiency silicon solar cells with back ZnTe layer hosting IPV effect: a numerical case study [J].
Boumaour, M. ;
Sali, S. ;
Kermadi, S. ;
Zougar, L. ;
Bahfir, A. ;
Chaieb, Z. .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01) :696-703
[4]   Scavenging Wind Energy by Triboelectric Nanogenerators [J].
Chen, Bo ;
Yang, Ya ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[5]   A fully-packaged and robust hybridized generator for harvesting vertical rotation energy in broad frequency band and building up self-powered wireless systems [J].
Chen, Jie ;
Guo, Hengyu ;
Liu, Guanlin ;
Wang, Xue ;
Xi, Yi ;
Javed, Muhammad Sufyan ;
Hu, Chenguo .
NANO ENERGY, 2017, 33 :508-514
[6]   Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator [J].
Chen, Yandong ;
Cheng, Yu ;
Jie, Yang ;
Cao, Xia ;
Wang, Ning ;
Wan, Zhong Lin .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) :2678-2684
[7]   Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting [J].
Cheng, Tinghai ;
Li, Yikang ;
Wang, Yi-Cheng ;
Gao, Qi ;
Ma, Teng ;
Wang, Zhong Lin .
NANO ENERGY, 2019, 60 :137-143
[8]   Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting [J].
Dudem, Bhaskar ;
Nghia Dinh Huynh ;
Kim, Wook ;
Kim, Dong Hyun ;
Hwang, Hee Jae ;
Choi, Dukhyun ;
Yu, Jae Su .
NANO ENERGY, 2017, 42 :269-281
[9]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[10]   An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion [J].
Halim, M. A. ;
Rantz, R. ;
Zhang, Q. ;
Gu, L. ;
Yang, K. ;
Roundy, S. .
APPLIED ENERGY, 2018, 217 :66-74