Magneto-Optical Activity in High Index Dielectric Nanoantennas

被引:41
作者
de Sousa, N. [1 ,2 ,3 ]
Froufe-Perez, L. S. [4 ]
Saenz, J. J. [3 ,5 ]
Garcia-Martin, A. [6 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Mat Condensada, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain
[3] Donostia Int Phys Ctr DIPC, P Manuel de Lardizabal 4, Donostia San Sebastian 20018, Spain
[4] Univ Fribourg, Dept Phys, Chemin Musee 3, CH-1700 Fribourg, Switzerland
[5] Basque Fdn Sci, IKERBASQUE, Bilbao 48013, Spain
[6] IMM Inst Microelect Madrid CNM CSIC, PTM, Isaac Newton 8, E-28760 Madrid, Spain
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
瑞士国家科学基金会;
关键词
DISCRETE-DIPOLE APPROXIMATION; GOLD; POLARIZABILITY; NANOPARTICLES; ANTENNAS; MODULATION; RESONANCES; EXCITATION; SHAPE; SIZE;
D O I
10.1038/srep30803
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.
引用
收藏
页数:8
相关论文
共 54 条
  • [21] Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces
    Gomez-Medina, Raquel
    Garcia-Camara, Braulio
    Suarez-Lacalle, Irene
    Gonzalez, Francisco
    Moreno, Fernando
    Nieto-Vesperinas, Manuel
    Jose Saenz, Juan
    [J]. JOURNAL OF NANOPHOTONICS, 2011, 5
  • [22] Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity
    Gonzalez-Diaz, Juan B.
    Garcia-Martin, Antonio
    Garcia-Martin, Jose M.
    Cebollada, Alfonso
    Armelles, Gaspar
    Sepulveda, Borja
    Alaverdyan, Yury
    Kall, Mikael
    [J]. SMALL, 2008, 4 (02) : 202 - 205
  • [23] Silicon Direct Opals
    Ibisate, Marta
    Golmayo, Dolores
    Lopez, Cefe
    [J]. ADVANCED MATERIALS, 2009, 21 (28) : 2899 - +
  • [24] The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
    Kelly, KL
    Coronado, E
    Zhao, LL
    Schatz, GC
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) : 668 - 677
  • [25] All-dielectric optical nanoantennas
    Krasnok, Alexander E.
    Miroshnichenko, Andrey E.
    Belov, Pavel A.
    Kivshar, Yuri S.
    [J]. OPTICS EXPRESS, 2012, 20 (18): : 20599 - 20604
  • [26] GENERAL-THEORY OF THE PURCELL-PENNYPACKER SCATTERING APPROACH AND ITS EXTENSION TO BIANISOTROPIC SCATTERERS
    LAKHTAKIA, A
    [J]. ASTROPHYSICAL JOURNAL, 1992, 394 (02) : 494 - 499
  • [27] Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition
    Lee, Kyeong-Seok
    El-Sayed, Mostafa A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (39) : 19220 - 19225
  • [28] Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods
    Link, S
    El-Sayed, MA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (40) : 8410 - 8426
  • [29] Magnetoplasmonic Design Rules for Active Magneto-Optics
    Lodewijks, Kristof
    Maccaferri, Nicolo
    Pakizeh, Tavakol
    Dumas, Randy K.
    Zubritskaya, Irina
    Akerman, Johan
    Vavassori, Paolo
    Dmitriev, Alexandre
    [J]. NANO LETTERS, 2014, 14 (12) : 7207 - 7214
  • [30] Maccaferri N., 2015, NAT COMM, V6