A parallel genetic algorithm for multi-objective flexible flowshop scheduling in pasta manufacturing

被引:18
|
作者
Shen, Ke [1 ]
De Pessemier, Toon [1 ]
Martens, Luc [1 ]
Joseph, Wout [1 ]
机构
[1] Univ Ghent, Dept Informat Technol, IMEC, Technol Pk 126, Ghent, Belgium
关键词
Genetic algorithm; Flexible flowshop; Production scheduling; Multi-objective optimization; EVOLUTIONARY ALGORITHMS; SHOP; OPTIMIZATION; CONVERGENCE; 2-STAGE; MODELS; BRANCH;
D O I
10.1016/j.cie.2021.107659
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Among the potential road maps to sustainable production, efficient manufacturing scheduling is a promising direction. This paper addresses the lack of knowledge in the scheduling theory by introducing a generalized flexible flow shop model with unrelated parallel machines in each stage. A mixed-integer programming formulation is proposed for such model, solved by a two-phase genetic algorithm (GA), tackling job sequencing and machine allocation in each phase. The algorithm is parallelized with a specialized island model, where the evaluated chromosomes of all generations are preserved to provide the final Pareto-Optimal solutions. The feasibility of our method is demonstrated with a small example from literature, followed with the investigation of the premature convergence issue. Afterwards, the algorithm is applied to a real-sized instance from a Belgium pasta manufacturer. We illustrate how the algorithm converges over iterations to trade-off near-optimal solutions (with 8.50% shorter makespan, 5.24% cheaper energy cost and 6.02% lower labor cost), and how the evaluated candidates distribute in the objective space. A comparison with a NSGA-II implementation is further performed using hypothesis testing, having 5.43%, 0.95% and 2.07% improvement in three sub-objectives mentioned above. Although this paper focuses on scheduling issues, the proposed GA can serve as an efficient method for other multi-objective optimization problems.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A matheuristic algorithm for multi-objective unrelated parallel machine scheduling problem
    Sarac, Tugba
    Ozcelik, Feristah
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2023, 38 (03): : 1953 - 1966
  • [32] A Memetic Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problem
    Yuan, Yuan
    Xu, Hua
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 559 - 566
  • [33] MULTI-OBJECTIVE SCHEDULING SIMULATION OF FLEXIBLE JOB-SHOP BASED ON MULTI-POPULATION GENETIC ALGORITHM
    Zhang, W.
    Wen, J. B.
    Zhu, Y. C.
    Hu, Y.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2017, 16 (02) : 313 - 321
  • [34] An Improved Ant Colony Algorithm for Multi-objective Flexible Job Shop Scheduling Problem
    Li, Li
    Wang, Keqi
    2009 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS ( ICAL 2009), VOLS 1-3, 2009, : 697 - +
  • [35] An effective hybrid algorithm for multi-objective flexible job-shop scheduling problem
    Huang, Xiabao
    Guan, Zailin
    Yang, Lixi
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (09):
  • [36] A collaboration-based multi-objective algorithm for distributed hybrid flowshop scheduling with resource constraints
    Li, Ronghao
    Li, Junqing
    Li, Jinhua
    Duan, Peiyong
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 83
  • [37] A machine-learning based memetic algorithm for the multi-objective permutation flowshop scheduling problem
    Wang, Xianpeng
    Tang, Lixin
    COMPUTERS & OPERATIONS RESEARCH, 2017, 79 : 60 - 77
  • [38] Parallel Multi-objective Memetic Algorithm for Competitive Facility Location
    Lancinskas, Algirdas
    Zilinskas, Julius
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2013), PT II, 2014, 8385 : 354 - 363
  • [39] Multi-objective Flexible Scheduling Optimization Scheme base on Improved DNA Genetic Algorithm
    Nie Shuzhi
    Zhong Yanhua
    JOURNAL OF COMPUTERS, 2012, 7 (08) : 1982 - 1989
  • [40] Scheduling of an assembly line with a multi-objective genetic algorithm
    Jianfeng Yu
    Yuehong Yin
    Zhaoneng Chen
    The International Journal of Advanced Manufacturing Technology, 2006, 28 (5-6) : 551 - 555