Reachability Analysis-Based Interval Estimation for Discrete-Time Takagi-Sugeno Fuzzy Systems

被引:19
作者
Guo, Shenghui [1 ]
Ren, Weijie [2 ]
Ahn, Choon Ki [3 ]
Wen, Chenglin [4 ]
Lam, Hak-Keung [5 ]
机构
[1] Suzhou Univ Sci & Technol, Coll Elect & Informat Engn, Suzhou 215009, Peoples R China
[2] Mie Univ, Dept Elect & Elect Engn, Tsu, Mie 5148507, Japan
[3] Korea Univ, Sch Elect Engn, Seoul 136701, South Korea
[4] Guangdong Univ Petrochem Technol, Sch Automat, Maoming 525000, Peoples R China
[5] Kings Coll London, Dept Engn, London WC2R 2LS, England
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Discrete-time systems; interval estimation; parameterized linear matrix inequality (LMI); reachability analysis; robust observer; Takagi-Sugeno fuzzy systems; OBSERVER DESIGN; NONLINEAR-SYSTEMS;
D O I
10.1109/TFUZZ.2021.3072681
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Considering disturbances, noise, and sensor faults, this article investigates interval estimation for discrete-time Takagi-Sugeno fuzzy systems. To obtain precise estimation results and attenuate disturbances and noise in the system simultaneously, we integrate robust observers based on the H-infinity technique and reachability analysis. Two novel observer gain computation methods are proposed for different purposes. The time-invariant method relaxes the original design conditions by transforming the parameterized linear matrix inequality (LMI) into a series of LMIs to increase computational speed, while the time-varying method employs the parameterized LMI directly and conducts calculation online. Furthermore, reachable set representations for error dynamics are formulated by making use of both time-invariant observer gain and time-varying observer gain. An inverted pendulum system simulation and a comparative numerical simulation are studied to illustrate the effectiveness and superiority of the developed methods.
引用
收藏
页码:1981 / 1992
页数:12
相关论文
共 41 条
[1]  
Alamo T, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P5831
[2]   Nonfragile H∞ Filter Design for T-S Fuzzy Systems in Standard Form [J].
Chang, Xiao-Heng ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (07) :3448-3458
[3]   Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence [J].
Combastel, Christophe .
AUTOMATICA, 2015, 55 :265-273
[4]   Efficient LMI Conditions for Enhanced Stabilization of Discrete-Time Takagi-Sugeno Models via Delayed Nonquadratic Lyapunov Functions [J].
Coutinho, Pedro Henrique S. ;
Lauber, Jimmy ;
Bernal, Miguel ;
Palhares, Reinaldo M. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (09) :1833-1843
[5]   OBSERVERS FOR DISCRETE SINGULAR SYSTEMS [J].
DAI, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (02) :187-191
[6]   Asynchronous Control of Continuous-Time Nonlinear Markov Jump Systems Subject to Strict Dissipativity [J].
Dong, Shanling ;
Wu, Zheng-Guang ;
Su, Hongye ;
Shi, Peng ;
Karimi, Hamid Reza .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (03) :1250-1256
[7]   Interval Observers for Time-Varying Discrete-Time Systems [J].
Efimov, Denis ;
Perruquetti, Wilfrid ;
Raissi, Tarek ;
Zolghadri, Ali .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (12) :3218-3224
[8]   Control of Nonlinear and LPV Systems: Interval Observer-Based Framework [J].
Efimov, Denis ;
Raissi, Tarek ;
Zolghadri, Ali .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) :773-778
[9]   Luenberger-like interval observer design for discrete-time descriptor linear system [J].
Guo, Shenghui ;
Jiang, Bin ;
Zhu, Fanglai ;
Wang, Zhenhua .
SYSTEMS & CONTROL LETTERS, 2019, 126 :21-27
[10]   Adaptive Event-Triggered Fault Detection for Interval Type-2 T-S Fuzzy Systems With Sensor Saturation [J].
Guo, Xiang-Gui ;
Fan, Xiao ;
Ahn, Choon Ki .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (08) :2310-2321