Magnetic assembly of transparent and conducting graphene-based functional composites

被引:113
作者
Le Ferrand, Hortense [1 ]
Bolisetty, Sreenath [2 ]
Demirors, Ahmet F. [1 ]
Libanori, Rafael [1 ]
Studart, Andre R. [1 ]
Mezzenga, Raffaele [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Mat, Complex Mat, CH-8093 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Food & Soft Mat, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
PERCOLATION-THRESHOLD; SCALABLE PRODUCTION; POLYMER COMPOSITES; 3; DIMENSIONS; ELECTRODES; EXFOLIATION; FABRICATION; STRENGTH;
D O I
10.1038/ncomms12078
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.
引用
收藏
页数:9
相关论文
共 59 条
[1]  
[Anonymous], J ELECT MAT
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection (vol 3, 3048, 2013) [J].
Cai, Le ;
Song, Li ;
Luan, Pingshan ;
Zhang, Qiang ;
Zhang, Nan ;
Gao, Qingqing ;
Zhao, Duan ;
Zhang, Xiao ;
Tu, Min ;
Yang, Feng ;
Zhou, Wenbin ;
Fan, Qingxia ;
Luo, Jun ;
Zhou, Weiya ;
Ajayan, Pulickel M. ;
Xie, Sishen .
SCIENTIFIC REPORTS, 2013, 3
[5]   Fast Response, Vertically Oriented Graphene Nanosheet Electric Double Layer Capacitors Synthesized from C2H2 [J].
Cai, Minzhen ;
Outlaw, Ronald A. ;
Quinlan, Ronald A. ;
Premathilake, Dilshan ;
Butler, Sue M. ;
Miller, John R. .
ACS NANO, 2014, 8 (06) :5873-5882
[6]   Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios [J].
Cassagnau, Philippe .
POLYMER, 2013, 54 (18) :4762-4775
[7]   Non-universal conductivity critical exponents in anisotropic percolating media:: a new interpretation [J].
Celzard, A ;
Marêché, JF .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 317 (3-4) :305-312
[8]   Carbon nanotubes and graphene towards soft electronics [J].
Chae S.H. ;
Lee Y.H. .
Nano Convergence, 1 (1)
[9]   A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure [J].
Chen, Song ;
Wei, Yong ;
Yuan, Xue ;
Lin, Yong ;
Liu, Lan .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (19) :4304-4311
[10]   Colloidal assembly directed by virtual magnetic moulds [J].
Demiroers, Ahmet F. ;
Pillai, Pramod P. ;
Kowalczyk, Bartlomiej ;
Grzybowski, Bartosz A. .
NATURE, 2013, 503 (7474) :99-103