Contrastive Feature Loss for Image Prediction

被引:21
作者
Andonian, Alex [1 ,3 ]
Park, Taesung [2 ,3 ]
Russell, Bryan [3 ]
Isola, Phillip [1 ]
Zhu, Jun-Yan [3 ,4 ]
Zhang, Richard [3 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Univ Calif Berkeley, Berkeley, CA USA
[3] Adobe Res, San Jose, CA 95110 USA
[4] CMU, Pittsburgh, PA USA
来源
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021) | 2021年
关键词
D O I
10.1109/ICCVW54120.2021.00220
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Training supervised image synthesis models requires a critic to compare two images: the ground truth to the result. Yet, this basic functionality remains an open problem. A popular line of approaches uses the L1 (mean absolute error) loss, either in the pixel or the feature space of pretrained deep networks. However, we observe that these losses tend to produce overly blurry and grey images, and other techniques such as GANs need to be employed to fight these artifacts. In this work, we introduce an information theory based approach to measuring similarity between two images. We argue that a good reconstruction should have high mutual information with the ground truth. This view enables learning a lightweight critic to "calibrate" a feature space in a contrastive manner, such that reconstructions of corresponding spatial patches are brought together, while other patches are repulsed. We show that our formulation immediately boosts the perceptual realism of output images when used as a drop-in replacement for the L1 loss, with or without an additional GAN loss.
引用
收藏
页码:1934 / 1943
页数:10
相关论文
共 50 条
[1]   Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space? [J].
Abdal, Rameen ;
Qin, Yipeng ;
Wonka, Peter .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4431-4440
[2]  
[Anonymous], 2019, INT C MACH LEARN ICM
[3]   Vacuum energy sequestering and conformal symmetry [J].
Ben-Dayan, Ido ;
Richter, Robert ;
Ruehle, Fabian ;
Westphal, Alexander .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (05)
[4]   The Perception-Distortion Tradeoff [J].
Blau, Yochai ;
Michaeli, Tomer .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6228-6237
[5]   Photographic Image Synthesis with Cascaded Refinement Networks [J].
Chen, Qifeng ;
Koltun, Vladlen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1520-1529
[6]  
Chen T, 2020, PR MACH LEARN RES, V119
[7]   Exploring Simple Siamese Representation Learning [J].
Chen, Xinlei ;
He, Kaiming .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15745-15753
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   Image Quality Assessment: Unifying Structure and Texture Similarity [J].
Ding, Keyan ;
Ma, Kede ;
Wang, Shiqi ;
Simoncelli, Eero P. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (05) :2567-2581