Dark Universe with Lagrange multipliers

被引:0
|
作者
Cid, Antonella [1 ]
Labrana, Pedro [1 ]
机构
[1] Univ Bio Bio, Dept Fis, Concepcion, Chile
关键词
HUBBLE-SPACE-TELESCOPE;
D O I
10.1063/1.4913349
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cosmological models with Lagrange multipliers are appealing because they could explain the behaviour of the dark sector in a unified way, in this sense dark matter and dark energy are two limits of a single fluid which describes the late behaviour of our universe at large scales. In this work we analyze extensions to the "Dust of Dark Energy model" proposed in JCAP 1005,012(2010) by including spatial curvature and more general potentials of the scalar field. We perform a dynamical system study and we present bayesian statistical analysis for the model using supernovae type Ia and H(z) data.
引用
收藏
页码:114 / 116
页数:3
相关论文
共 50 条
  • [41] NEW APPROACH TO LAGRANGE MULTIPLIERS.
    Clarke, Frank H.
    Mathematics of Operations Research, 1976, 1 (02): : 165 - 174
  • [42] Slopes of shadow prices and Lagrange multipliers
    Flam, S. D.
    Jongen, H. Th.
    Stein, O.
    OPTIMIZATION LETTERS, 2008, 2 (02) : 143 - 155
  • [43] Initial Lagrange multipliers for the shooting method
    Hull, David G.
    SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2, 2008, 130 : 259 - 265
  • [44] A Modified Method to Identification of Lagrange Multipliers
    Karimi, P.
    Eshghi, N.
    Ganji, D. D.
    Rostamian, M.
    Daniali, H. M.
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [45] Comparison of Lagrange multipliers for telegraph equations
    Hamid, Muhammad
    Usman, Muhammad
    Zubair, Tamour
    Mohyud-Din, Syed Tauseef
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 2323 - 2328
  • [46] GENERALIZED LAGRANGE MULTIPLIERS IN ELASTOPLASTIC TORSION
    PIAT, VC
    PERCIVALE, D
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 114 (02) : 570 - 579
  • [47] Nonlocal Lagrange multipliers and transport densities
    Azevedo, Assis
    Rodrigues, Jose Francisco
    Santos, Lisa
    BULLETIN OF MATHEMATICAL SCIENCES, 2024, 14 (02)
  • [48] Initial Lagrange multipliers for the shooting method
    Hull, David G.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2008, 31 (05) : 1490 - 1492
  • [49] Convergence of a substructuring method with Lagrange multipliers
    Mandel, J
    Tezaur, R
    NUMERISCHE MATHEMATIK, 1996, 73 (04) : 473 - 487
  • [50] GEOMETRICAL VIEW OF LAGRANGE MULTIPLIERS IN MECHANICS
    GASKILL, JR
    ARENSTEIN, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (09) : 1912 - +