Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy

被引:99
|
作者
Burns, AR
Frankel, DJ
Buranda, T
机构
[1] Sandia Natl Labs, Biomol Mat & Interfaces Dept, Albuquerque, NM 87185 USA
[2] Univ New Mexico, Sch Med, Dept Pathol, Albuquerque, NM 87131 USA
关键词
D O I
10.1529/biophysj.105.060327
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Fluorescence correlation spectroscopy ( FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2- dipalmitoyl- sn- glycero- 3- phosphocholine ( DPPC) lipid domains in 1,2- dioleoyl- sn- glycero- 3-phosphocholine ( DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup- labeled GM1 ganglioside probes and for headgroup- and tailgroup- labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components ( fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.
引用
收藏
页码:1081 / 1093
页数:13
相关论文
共 50 条
  • [1] Local dynamics in topographic imaging of lipid domains in supported bilayers: Atomic force microscopy and fluorescence correlation spectroscopy
    Burns, AR
    Frankel, DJ
    Buranda, T
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 208A - 208A
  • [2] Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers
    Unsay, Joseph D.
    Cosentino, Katia
    Garcia-Saez, Ana J.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (101): : 1 - 9
  • [3] Atomic force microscopy of supported lipid bilayers
    Mingeot-Leclercq, Marie-Paule
    Deleu, Magali
    Brasseur, Robert
    Dufrene, Yves F.
    NATURE PROTOCOLS, 2008, 3 (10) : 1654 - 1659
  • [4] Atomic force microscopy of supported lipid bilayers
    Marie-Paule Mingeot-Leclercq
    Magali Deleu
    Robert Brasseur
    Yves F Dufrêne
    Nature Protocols, 2008, 3 : 1654 - 1659
  • [5] Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy
    Attwood, Simon J.
    Choi, Youngjik
    Leonenko, Zoya
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (02): : 3514 - 3539
  • [6] Imaging lipid domains in supported membranes with simultaneous atomic force and fluorescence microscopy
    Burns, AR
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 18A - 18A
  • [7] Atomic Force Microscopy Force Mapping in the Study of Supported Lipid Bilayers
    Li, James K.
    Sullan, Ruby May A.
    Zou, Shan
    LANGMUIR, 2011, 27 (04) : 1308 - 1313
  • [8] Atomic force microscopy studies of β-amyloid in supported lipid bilayers
    Chakrapani, M
    Ianoul, A
    Johnston, LJ
    Katsaras, J
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 372A - 372A
  • [9] Supported lipid bilayers as effective substrates for atomic force microscopy
    Czajkowsky, DM
    Shao, ZF
    ATOMIC FORCE MICROSCOPY IN CELL BIOLOGY, 2002, 68 : 231 - 241
  • [10] Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy
    Das, Chinmay
    Sheikh, Khizar H.
    Olmsted, Peter D.
    Connell, Simon D.
    PHYSICAL REVIEW E, 2010, 82 (04):