UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning

被引:67
作者
Luo, Kunming [1 ]
Wang, Chuan [1 ]
Liu, Shuaicheng [1 ,2 ]
Fan, Haoqiang [1 ]
Wang, Jue [1 ]
Sun, Jian [1 ]
机构
[1] Megvii Technol, Beijing, Peoples R China
[2] Univ Elect Sci & Technol China, Beijing, Peoples R China
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR46437.2021.00110
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an unsupervised learning approach for optical flow estimation by improving the upsampling and learning of pyramid network. We design a self-guided upsample module to tackle the interpolation blur problem caused by bilinear upsampling between pyramid levels. Moreover, we propose a pyramid distillation loss to add supervision for intermediate levels via distilling the finest flow as pseudo labels. By integrating these two components together, our method achieves the best performance for unsupervised optical flow learning on multiple leading benchmarks, including MPI-SIntel, KITTI 2012 and KITTI 2015. In particular, we achieve EPE=1.4 on KITTI 2012 and F1=9.38% on KITTI 2015, which outperform the previous state-of-the-art methods by 22.2% and 15.7%, respectively.
引用
收藏
页码:1045 / 1054
页数:10
相关论文
共 45 条
[1]  
Ahmadi Aria, 2016, P ICIP
[2]  
[Anonymous], 2016, P EUR C COMP VIS ECC
[3]   CNN-based Patch Matching for Optical Flow with Thresholded Hinge Embedding Loss [J].
Bailer, Christian ;
Varanasi, Kiran ;
Stricker, Didier .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2710-2719
[4]   Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios? [J].
Behl, Aseem ;
Jafari, Omid Hosseini ;
Mustikovela, Siva Karthik ;
Abu Alhaija, Hassan ;
Rother, Carsten ;
Geiger, Andreas .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2593-2602
[5]  
Brox T., 2004, P ECCV
[6]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625
[7]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[8]  
Geiger A., 2012, C COMP VIS PATT REC
[9]  
He KM, 2010, LECT NOTES COMPUT SC, V6311, P1
[10]   LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation [J].
Hui, Tak-Wai ;
Tang, Xiaoou ;
Loy, Chen Change .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8981-8989