Computational proof of the Mackey formula for q > 2

被引:29
作者
Bonnafe, Cedric [2 ]
Michel, Jean [1 ]
机构
[1] Univ Paris 07, CNRS, UMR 7586, Inst Math Jussieu, F-75013 Paris, France
[2] Univ Franche Comte, CNRS, UMR 6623, Lab Math Besancon, F-25030 Besancon, France
关键词
Finite reductive groups; Lusztig induction; Mackey formula; GAP; REDUCTIVE GROUPS; REPRESENTATIONS; ELEMENTS;
D O I
10.1016/j.jalgebra.2010.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected reductive group defined over a finite field with q elements. We prove that the Mackey formula for the Lusztig induction and restriction holds in G whenever q > 2 or G does not have a component of type E. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:506 / 526
页数:21
相关论文
共 12 条
[1]   Quasi-isolated elements in reductive groups [J].
Bonnafé, C .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (07) :2315-2337
[2]   Mackey formula for large q [J].
Bonnafe, C .
JOURNAL OF ALGEBRA, 1998, 201 (01) :207-232
[3]   Regular unipotent elements of Levi subgroups [J].
Bonnafé, C .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (02) :246-276
[4]   Mackey formula in type A (vol 80, pg 545, 2000) [J].
Bonnafé, C .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 :435-442
[5]  
Bonnafé C, 2006, NAGOYA MATH J, V183, P1
[6]   GENERIC SYLOW THEOREMS FOR REDUCTIVE GROUPS OVER FINITE-FIELDS [J].
BROUE, M ;
MALLE, G .
MATHEMATISCHE ANNALEN, 1992, 292 (02) :241-262
[7]   DUALITY FOR REPRESENTATIONS OF A REDUCTIVE GROUP OVER A FINITE-FIELD .2. [J].
DELIGNE, P ;
LUSZTIG, G .
JOURNAL OF ALGEBRA, 1983, 81 (02) :540-545
[8]   REPRESENTATIONS OF REDUCTIVE GROUPS OVER FINITE-FIELDS [J].
DELIGNE, P ;
LUSZTIG, G .
ANNALS OF MATHEMATICS, 1976, 103 (01) :103-161
[9]  
DIGNE F, 1992, J REINE ANGEW MATH, V425, P155
[10]  
Digne F., 1991, London Math. Soc. Student Texts, V21