Ends of Gradient Ricci Solitons

被引:2
|
作者
Munteanu, Ovidiu [1 ]
Wang, Jiaping [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06268 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Ricci solitons; Ricci flow; Ends; METRIC-MEASURE-SPACES; COMPLETE MANIFOLDS; SHRINKING; GEOMETRY; CURVATURE; CLASSIFICATION; SINGULARITIES; DIAMETER;
D O I
10.1007/s12220-022-01047-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Self-similar solutions to Ricci flows, called Ricci solitons, are important geometric objects. To address the question whether new solitons can be constructed from existing ones through connected sums, we are led to investigate the issue of connectedness at infinity for solitons. The paper provides a brief account of our work along this line as well as a new result. The new result says that an n-dimensional gradient shrinking Ricci soliton is necessarily connected at infinity if its scalar curvature is bounded above by n/3.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Ends of Gradient Ricci Solitons
    Ovidiu Munteanu
    Jiaping Wang
    The Journal of Geometric Analysis, 2022, 32
  • [2] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [3] On Gradient Ricci Solitons
    Munteanu, Ovidiu
    Sesum, Natasa
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 539 - 561
  • [4] On Gradient Ricci Solitons
    Ovidiu Munteanu
    Natasa Sesum
    Journal of Geometric Analysis, 2013, 23 : 539 - 561
  • [5] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [6] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510
  • [7] On the Ricci curvature of steady gradient Ricci solitons
    Guo, Hongxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) : 497 - 501
  • [8] RIGIDITY OF GRADIENT RICCI SOLITONS
    Petersen, Peter
    Wylie, William
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 241 (02) : 329 - 345
  • [9] UNIQUENESS OF GRADIENT RICCI SOLITONS
    Brendle, Simon
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (03) : 531 - 538
  • [10] On the classification of gradient Ricci solitons
    Petersen, Peter
    Wylie, William
    GEOMETRY & TOPOLOGY, 2010, 14 (04) : 2277 - 2300