On the joint residence time of N independent two-dimensional Brownian motions

被引:0
作者
Bénichou, O
Coppey, M
Klafter, J
Moreau, M
Oshanin, G
机构
[1] Coll France, Phys Mat Condensee Lab, F-75252 Paris 05, France
[2] Univ Paris 06, Phys Theor Liquides Lab, F-75252 Paris, France
[3] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 26期
关键词
FIRST PASSAGE TIMES; DIFFUSION-PROCESSES; RANDOM WALKERS; ORDER-STATISTICS; REGULAR LATTICES; ENERGY-TRANSFER; SYSTEMS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the behaviour of several joint residence times of N independent Brownian particles in a disc of radius R in two dimensions. We consider: (i) the time T-N(t) spent by all N particles simultaneously in the disc within the time interval [0, t], (ii) the time T-N(m) (t) which at least m out of N particles spend together in the disc within the time interval [0, t], and (iii) the time (T) over tilde ((m))(N) which exactly m out of N particles spend together in the disc within the time interval [0, t]. We obtain very simple exact expressions for the expectations of these three residence times in the limit t --> infinity.
引用
收藏
页码:7225 / 7231
页数:7
相关论文
共 21 条
  • [1] RESIDENCE TIMES IN DIFFUSION-PROCESSES
    AGMON, N
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) : 3644 - 3647
  • [2] On mean residence and first passage times in finite one-dimensional systems
    Bar-Haim, A
    Klafter, J
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (13) : 5187 - 5193
  • [3] Windings of the 2D free Rouse chain
    Bénichou, O
    Desbois, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (38): : 6655 - 6667
  • [4] Residence time distribution of a Brownian particle
    Berezhkovskii, AM
    Zaloj, V
    Agmon, N
    [J]. PHYSICAL REVIEW E, 1998, 57 (04): : 3937 - 3947
  • [5] ENERGY-TRANSFER AS A RANDOM-WALK ON REGULAR LATTICES
    BLUMEN, A
    ZUMOFEN, G
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (02) : 892 - 907
  • [6] Occupancy of a single site by many random walkers
    Boguñá, M
    Berezhkovskii, AM
    Weiss, GH
    [J]. PHYSICAL REVIEW E, 2000, 62 (03) : 3250 - 3256
  • [7] Darling DA., 1957, T AM MATH SOC, V84, P444
  • [9] Sorting single events:: Mean arrival times of N random walkers
    Dräger, J
    Klafter, J
    [J]. PHYSICAL REVIEW E, 1999, 60 (06): : 6503 - 6506
  • [10] EIGEN M, 1994, P NATL ACAD SCI USA, V91, P570