Optimizing energy potentials for success in protein tertiary structure prediction

被引:26
作者
Chiu, TL
Goldstein, RA [1 ]
机构
[1] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Div Biophys Res, Ann Arbor, MI 48109 USA
来源
FOLDING & DESIGN | 1998年 / 3卷 / 03期
关键词
contact potential; fold recognition; lattice proteins; protein folding; Z-score;
D O I
10.1016/S1359-0278(98)00030-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Success in solving the protein structure prediction problem relies on the choice of an accurate potential energy function. For a single protein sequence, it has been shown that the potential energy function can be optimized for predictive success by maximizing the energy gap between the correct structure and the ensemble of random structures relative to the distribution of the energies of these random structures (the Z-score). Different methods have been described for implementing this procedure for an ensemble of database proteins. Here, we demonstrate a new approach. Results: For a single protein sequence, the probability of success (i.e. the probability that the folded state is the lowest energy state) is derived. We then maximize the average probability of success for a set of proteins to obtain the optimal potential energy function. This results in maximum attention being focused on the proteins whose structures are difficult but not impossible to predict. Conclusions: Using a lattice model of proteins, we show that the optimal interaction potentials obtained by our method are both more accurate and more likely to produce successful predictions than those obtained by other averaging procedures. (C) Current Biology Ltd ISSN 1359-0278.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 21 条
[1]   SELECTION OF DNA-BINDING SITES BY REGULATORY PROTEINS - STATISTICAL-MECHANICAL THEORY AND APPLICATION TO OPERATORS AND PROMOTERS [J].
BERG, OG ;
VONHIPPEL, PH .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 193 (04) :723-743
[2]   A METHOD TO IDENTIFY PROTEIN SEQUENCES THAT FOLD INTO A KNOWN 3-DIMENSIONAL STRUCTURE [J].
BOWIE, JU ;
LUTHY, R ;
EISENBERG, D .
SCIENCE, 1991, 253 (5016) :164-170
[3]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528
[4]   TRANSITION-STATES AND FOLDING DYNAMICS OF PROTEINS AND HETEROPOLYMERS [J].
CHAN, HS ;
DILL, KA .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (12) :9238-9257
[5]   PREDICTION OF PROTEIN FOLDING FROM AMINO-ACID-SEQUENCE OVER DISCRETE CONFORMATION SPACES [J].
CRIPPEN, GM .
BIOCHEMISTRY, 1991, 30 (17) :4232-4237
[6]   SIMILAR AMINO-ACID-SEQUENCES - CHANCE OR COMMON ANCESTRY [J].
DOOLITTLE, RF .
SCIENCE, 1981, 214 (4517) :149-159
[7]  
Finkelstein A V, 1995, Subcell Biochem, V24, P1
[8]   KINEMATICS AND THERMODYNAMICS OF A FOLDING HETEROPOLYMER [J].
FUKUGITA, M ;
LANCASTER, D ;
MITCHARD, MG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (13) :6365-6368
[9]   THEORETICAL-STUDIES OF PROTEIN FOLDING [J].
GO, N .
ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1983, 12 :183-210
[10]   TOPOLOGY FINGERPRINT APPROACH TO THE INVERSE PROTEIN FOLDING PROBLEM [J].
GODZIK, A ;
KOLINSKI, A ;
SKOLNICK, J .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 227 (01) :227-238