BOUNDARY FEEDBACK STABILIZATION FOR AN UNSTABLE TIME FRACTIONAL REACTION DIFFUSION EQUATION

被引:73
作者
Zhou, Hua-Cheng [1 ,2 ]
Guo, Bao-Zhu [3 ,4 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
[2] Tel Aviv Univ, Sch Elect Engn, IL-69978 Ramat Aviv, Israel
[3] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金; 以色列科学基金会;
关键词
time fractional reaction diffusion equation; boundary control; output feedback; stabilization; DISTURBANCE REJECTION CONTROL; SLIDING MODE CONTROL; MULTIDIMENSIONAL WAVE-EQUATION; BERNOULLI BEAM EQUATION; ACTIVE DISTURBANCE; APPROXIMATE CONTROLLABILITY; SYSTEMS; SUBJECT;
D O I
10.1137/15M1048999
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider boundary feedback stabilization for unstable time fractional reaction diffusion equations. New state feedback controls with actuation on one end are designed by the backstepping method for both Dirichlet and Neumann boundary controls. By the Riesz basis approach and the fractional Lyapunov method, we prove the existence and uniqueness and the Mittag-Leffler stability for the closed-loop systems. For both cases, the observers and the observer based output feedback are designed to stabilize the systems.
引用
收藏
页码:75 / 101
页数:27
相关论文
共 35 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]  
[Anonymous], 2012, APPL BACKSTEPPING CO
[3]  
Bazhlekova EG., 1998, Fract. Calc. Appl. Anal, V1, P255
[4]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[5]   Nondiffusive transport in plasma turbulence: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2005, 94 (06)
[6]  
Ding DS, 2014, IEEE DECIS CONTR P, P6920, DOI 10.1109/CDC.2014.7040476
[7]  
Fujishiro K., ARXIV14040207V3
[8]   The Active Disturbance Rejection Control to Stabilization for Multi-Dimensional Wave Equation With Boundary Control Matched Disturbance [J].
Guo, Bao-Zhu ;
Zhou, Hua-Cheng .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (01) :143-157
[9]   ACTIVE DISTURBANCE REJECTION CONTROL FOR REJECTING BOUNDARY DISTURBANCE FROM MULTIDIMENSIONAL KIRCHHOFF PLATE VIA BOUNDARY CONTROL [J].
Guo, Bao-Zhu ;
Zhou, Hua-Cheng .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (05) :2800-2830
[10]   Sliding mode control and active disturbance rejection control to the stabilization of one-dimensional Schrodinger equation subject to boundary control matched disturbance [J].
Guo, Bao-Zhu ;
Liu, Jun-Jun .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (16) :2194-2212