Stretchable carbon nanotube conductors and their applications

被引:29
作者
Hwang, Sunju [1 ]
Jeong, Soo-Hwan [1 ]
机构
[1] Kyungpook Natl Univ, Dept Chem Engn, 80 Daehak Ro, Daegu 41566, South Korea
关键词
Carbon Nanotube; Stretchable Conductors; Nanomaterials; Strain Sensors; Supercapacitors; TRANSPARENT THIN-FILMS; HUMAN-MOTION DETECTION; STRAIN SENSOR; ELASTIC CONDUCTORS; HIGH-PERFORMANCE; ELECTRONIC SKIN; POLYPYRROLE ELECTRODES; CAPACITIVE PRESSURE; COMPOSITE FIBERS; SINGLE;
D O I
10.1007/s11814-016-0130-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stretchable electronics has evolved rapidly in the past decade because of its promising applications, as electronic devices undergo large mechanical deformation (e.g., bending, folding, twisting, and stretching). Stretchable conductors are particularly crucial for the realization of stretchable electronic devices. Therefore, tremendous efforts have been dedicated toward developing stretchable conductors, with a focus on conductive material/polymer composites. This review summarizes the recent progress in stretchable conductors and related stretchable devices based on carbon nanotubes (CNTs), which was enabled by their outstanding electrical and mechanical properties. Various strategies for developing highly stretchable conductors that can deform into nonplanar shapes without significant degradation in their electronic performance are described in terms of preparation processes. Finally, challenges and perspectives for further advances in CNT-based stretchable conductors are discussed.
引用
收藏
页码:2771 / 2787
页数:17
相关论文
共 117 条
[1]   Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes [J].
Ahn, Sehee ;
Choe, Ayoung ;
Park, Jonghwa ;
Kim, Heesuk ;
Son, Jeong Gon ;
Lee, Sang-Soo ;
Park, Min ;
Ko, Hyunhyub .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (10) :2319-2325
[2]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[3]   Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability [J].
Bandodkar, Amay J. ;
Jeerapan, Itthipon ;
You, Jung-Min ;
Nunez-Flores, Rogelio ;
Wang, Joseph .
NANO LETTERS, 2016, 16 (01) :721-727
[4]   Nanodiamond-Polymer Composite Fibers and Coatings [J].
Behler, Kristopher D. ;
Stravato, Antonella ;
Mochalin, Vadym ;
Korneva, Guzeliya ;
Yushin, Gleb ;
Gogotsi, Yury .
ACS NANO, 2009, 3 (02) :363-369
[5]   Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection [J].
Cai, Le ;
Song, Li ;
Luan, Pingshan ;
Zhang, Qiang ;
Zhang, Nan ;
Gao, Qingqing ;
Zhao, Duan ;
Zhang, Xiao ;
Tu, Min ;
Yang, Feng ;
Zhou, Wenbin ;
Fan, Qingxia ;
Luo, Jun ;
Zhou, Weiya ;
Ajayan, Pulickel M. ;
Xie, Sishen .
SCIENTIFIC REPORTS, 2013, 3
[6]   Highly Transparent and Conductive Stretchable Conductors Based on Hierarchical Reticulate Single-Walled Carbon Nanotube Architecture [J].
Cai, Le ;
Li, Jinzhu ;
Luan, Pingshan ;
Dong, Haibo ;
Zhao, Duan ;
Zhang, Qiang ;
Zhang, Xiao ;
Tu, Min ;
Zeng, Qingsheng ;
Zhou, Weiya ;
Xie, Sishen .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (24) :5238-5244
[7]   Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites [J].
Chen, Guang-Xin ;
Li, Yongjin ;
Shimizu, Hiroshi .
CARBON, 2007, 45 (12) :2334-2340
[8]   High-Performance, Stretchable, Wire-Shaped Supercapacitors [J].
Chen, Tao ;
Hao, Rui ;
Peng, Huisheng ;
Dai, Liming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (02) :618-622
[9]   High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets [J].
Chen, Tao ;
Peng, Huisheng ;
Durstock, Michael ;
Dai, Liming .
SCIENTIFIC REPORTS, 2014, 4
[10]   Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability [J].
Cheng, Tao ;
Zhang, Yizhou ;
Lai, Wen-Yong ;
Huang, Wei .
ADVANCED MATERIALS, 2015, 27 (22) :3349-3376