Slicing Bing doubles

被引:16
作者
Cimasoni, David [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2006年 / 6卷
关键词
D O I
10.2140/agt.2006.6.2395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bing doubling is an operation which produces a 2-component boundary link B(K) from a knot K. If K is slice, then B(K) is easily seen to be boundary slice. In this paper, we investigate whether the converse holds. Our main result is that if B(K) is boundary slice, then K is algebraically slice. We also show that the Rasmussen invariant can tell that certain Bing doubles are not smoothly slice.
引用
收藏
页码:2393 / 2413
页数:21
相关论文
共 22 条
[1]  
[Anonymous], 1982, LOW DIMENSIONAL TOPO
[2]  
BELIAKOVA A, 2001, ARXIVMATHQA0510382
[3]   A HOMEOMORPHISM BETWEEN THE 3-SPHERE AND THE SUM OF 2 SOLID HORNED SPHERES [J].
BING, RH .
ANNALS OF MATHEMATICS, 1952, 56 (02) :354-362
[4]  
BUDNEY R, 2003, ARXIVMATHGT0506523
[5]   Signature invariants of links from irregular covers and non-abelian covers [J].
Cha, JC ;
Ko, KH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 :67-81
[6]  
CIMASONI D, 2005, ARXICMATHGT0505185
[7]  
FREEDMAN MH, 1939, PRINCETON MATH SERIE, V39
[8]   Link concordance, boundary link concordance and eta-invariants [J].
Friedl, S .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2005, 138 :437-460
[9]  
HARVEY S, ARXIVMATHGT0609378
[10]  
HATCHER A, BASIC TOPOLOGY 3 MAN