Analysis of ALS and normal EMG signals based on empirical mode decomposition

被引:49
|
作者
Mishra, Vipin K. [1 ]
Bajaj, Varun [1 ]
Kumar, Anil [1 ]
Singh, Girish Kumar [2 ]
机构
[1] PDPM Indian Inst Informat Technol Design & Mfg Ja, Discipline Elect & Commun Engn, Jabalpur, India
[2] Indian Inst Technol, Dept Elect Engn, Roorkee, Uttarakhand, India
关键词
electromyography; decomposition; medical signal processing; diseases; neurophysiology; amplitude modulation; frequency modulation; least squares approximations; support vector machines; signal classification; ALS analysis; normal EMG signal analysis; empirical mode decomposition; electromyogram signal; neuromuscular disease; amyotrophic lateral sclerosis; motor neuron degeneration; spinal cord; narrow band intrinsic mode function; IMF; EMD technique; amplitude modulation bandwidth; frequency modulation bandwidth; normalised instantaneous frequency; spectral momentum; power spectral density; least square support vector machine classifier; EEG SIGNALS; PATTERN-RECOGNITION; CLASSIFICATION; ELECTROMYOGRAM; SPECTRUM; SEIZURE;
D O I
10.1049/iet-smt.2016.0208
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electromyogram (EMG) signals contain a lot of information about the neuromuscular diseases like amyotrophic lateral sclerosis (ALS). ALS progressively degenerates the motor neurons in spinal cord. In this study, a new technique for the analysis of normal and ALS EMG signals is proposed. EMG signals are decomposed into narrow band intrinsic mode functions (IMFs) by using empirical mode decomposition (EMD) technique. The area of complex plot, two bandwidths namely amplitude modulation bandwidth (B-AM) and frequency modulation bandwidth (B-FM), normalised instantaneous frequency (IFn), spectral momentum of power spectral density (SMPSD) and mean of first derivative of instantaneous frequency (MFDIF) are extracted from analytic IMFs obtained by EMD technique. These six features are used as input in least square support vector machine classifier for the classification of ALS and normal EMG signals. Experimental results and comparative analysis show that classification performance of the proposed method is better than other existing method in the same database.
引用
收藏
页码:963 / 971
页数:9
相关论文
共 50 条
  • [31] Neural Networks for Biomedical Signals Classification Based on Empirical Mode Decomposition and Principal Component Analysis
    Abdou, Abdoul Dalibou
    Ngom, Ndeye Fatou
    Sidibe, Samba
    Niang, Oumar
    Thioune, Abdoulaye
    Ndiaye, Cheikh H. T. C.
    INNOVATION AND INTERDISCIPLINARY SOLUTIONS FOR UNDERSERVED AREAS, 2018, 204 : 267 - 278
  • [32] On the empirical mode decomposition applied to the analysis of brain SPECT images
    Gallix, A.
    Gorriz, J. M.
    Ramirez, J.
    Illan, I. A.
    Lang, E. W.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (18) : 13451 - 13461
  • [33] Automated Diagnosis of Encephalopathy Based on Empirical Mode EEG Decomposition
    Jacob, J. E.
    Gopakumar, K.
    Iype, T.
    Cherian, A.
    NEUROPHYSIOLOGY, 2018, 50 (04) : 278 - 285
  • [34] Terahertz signal analysis for biological tissues based on empirical mode decomposition
    Zhang, Rui
    Wu, Tong
    Zhao, Yuejin
    OPTIK, 2019, 183 : 906 - 911
  • [35] Terahertz Spectrum Analysis Based on Empirical Mode Decomposition
    Su, Yunpeng
    Zheng, Xiaoping
    Deng, Xiaojiao
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2017, 38 (08) : 972 - 979
  • [36] Emotion Recognition from EEG Signals by Using Empirical Mode Decomposition
    Degirmenci, Murside
    Ozdemir, Mehmet Akif
    Sadighzadeh, Reza
    Akan, Aydin
    2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2018,
  • [37] An Improved Signal Processing Approach Based on Analysis Mode Decomposition and Empirical Mode Decomposition
    Chen, Zhongzhe
    Liu, Baqiao
    Yan, Xiaogang
    Yang, Hongquan
    ENERGIES, 2019, 12 (16)
  • [38] Terahertz Spectrum Analysis Based on Empirical Mode Decomposition
    Yunpeng Su
    Xiaoping Zheng
    Xiaojiao Deng
    Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38 : 972 - 979
  • [39] Empirical Mode Decomposition Analysis for Visual Stylometry
    Hughes, James M.
    Mao, Dong
    Rockmore, Daniel N.
    Wang, Yang
    Wu, Qiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2147 - 2157
  • [40] Analysis of EEG Signals using Empirical Mode Decomposition and Support Vector Machine
    Das, Kaushik
    Mudoi, Rajkishur
    2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 358 - 362