Multi-view semi-supervised learning for classification on dynamic networks

被引:7
|
作者
Chen, Chuan [1 ,2 ]
Li, Yuzheng [1 ]
Qian, Hui [1 ]
Zheng, Zibin [1 ,2 ]
Hu, Yanqing [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Natl Engn Res Ctr Digital Life, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Multi-view learning; Dynamic networks; Total variation; ALGORITHM;
D O I
10.1016/j.knosys.2020.105698
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent decades, the task of graph-based multi-view learning has become a fundamental research problem, which could integrate data from multiple sources to improve performance. The dynamic networks could be treated as one kind of multi-view network, but it is continually evolving and leads to entirely different observations at multiple epochs. In this paper, we treat these observations as multiple views and seek a semi-supervised multi-view approach to address the classification problem. Therefore, we propose Multi-view Semi-supervised learning for Classification on Dynamic networks (MSCD). With the aid of total variation regularization, MSCD can obtain a sparse and smooth combination of the views and a better classification result. From the theoretical point of view, the MSCD model is decomposed into simpler sub-problems, which can be effectively solved under the Alternating Direction Method of Multipliers (ADMM) framework. Extensive experiments on both synthetic and real-world datasets show that our model can outperform the state-of-the-art approaches. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multi-view Learning for Semi-supervised Sentiment Classification
    Su, Yan
    Li, Shoushan
    Ju, Shengfeng
    Zhou, Guodong
    Li, Xiaojun
    2012 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2012), 2012, : 13 - 16
  • [2] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    NEUROCOMPUTING, 2016, 208 : 136 - 142
  • [3] Embedding Regularizer Learning for Multi-View Semi-Supervised Classification
    Huang, Aiping
    Wang, Zheng
    Zheng, Yannan
    Zhao, Tiesong
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6997 - 7011
  • [4] Trusted Semi-Supervised Multi-View Classification With Contrastive Learning
    Wang, Xiaoli
    Wang, Yongli
    Wang, Yupeng
    Huang, Anqi
    Liu, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8268 - 8278
  • [5] Semi-Supervised Learning for Multi-View Data Classification and Visualization
    Ziraki, Najmeh
    Bosaghzadeh, Alireza
    Dornaika, Fadi
    INFORMATION, 2024, 15 (07)
  • [6] Multi-view semi-supervised classification overview
    Jiang, Lekang
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [7] Latent Multi-view Semi-Supervised Classification
    Bo, Xiaofan
    Kang, Zhao
    Zhao, Zhitong
    Su, Yuanzhang
    Chen, Wenyu
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 348 - 362
  • [8] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [9] MMatch: Semi-Supervised Discriminative Representation Learning for Multi-View Classification
    Wang, Xiaoli
    Fu, Liyong
    Zhang, Yudong
    Wang, Yongli
    Li, Zechao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 6425 - 6436
  • [10] Multi-view classification with semi-supervised learning for SAR target recognition
    Zhang, Yukun
    Guo, Xiansheng
    Ren, Haohao
    Li, Lin
    SIGNAL PROCESSING, 2021, 183