Some properties of inductively minimal geometries

被引:6
作者
Buekenhout, F
Cara, P
机构
[1] Free Univ Brussels, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Dept Wiskunde, B-1050 Brussels, Belgium
关键词
incidence geometry; flag-transitive groups; symmetric groups;
D O I
10.36045/bbms/1103409005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
lWe study the properties (2T)(1), (IP)(2), PRI, RPRI, QPRI and RWPRI for inductively minimal pairs (Gamma, G) consisting of a finite geometry and a group acting flag-transitively on it. For each of these properties, we characterize which inductively minimal pairs satisfy it.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 11 条
[1]  
BUEKENHOUT F, 1995, LOND MATH S, V207, P35, DOI 10.1017/CBO9780511565823.006
[2]  
Buekenhout F, 1997, LECT NOTES PURE APPL, V190, P185
[3]  
Buekenhout F, 1998, TRENDS MATH, P39
[4]  
Buekenhout F, 1995, Handbook of Incidence Geometry. Buildings and Foundations
[5]  
BUEKENHOUT F, 1998, B BELG MATH SOC S S
[6]  
BUEKENHOUT F, IN PRESS ACAD ROY SM
[7]  
BUEKENHOUT F, 1996, EXP MATH, V5
[8]  
Gottschalk H, 1998, TRENDS MATH, P65
[9]  
GOTTSCHALK H, 1995, THESIS MAT I J LIEBI
[10]  
Harary F., 1972, GRAPH THEORY