Selective Surfaces: High-Surface-Area Zinc Tin Sulfide Chalcogels

被引:89
作者
Oh, Youngtak [1 ]
Bag, Santanu [1 ]
Malliakas, Christos D. [1 ]
Kanatzidis, Mercouri G. [1 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
porous materials; gas absorption; gas separation; chalcogenides; heavy metal removal; HEXAGONAL MESOPOROUS GERMANIUM; CHARGE-TRANSFER; AQUEOUS-SOLUTION; BAND-GAP; = K; AEROGELS; REMOVAL; SILICA; CATALYSTS; CLUSTERS;
D O I
10.1021/cm2003462
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous zinc tin sulfide aerogel materials were constructed by metathesis reactions between Zn(acac)(2)center dot H(2)O and tetrahedral thiostannate cluster salts containin discrete [SnS(4)](4-), [Sn(2)S(6)](4-) and [Sn(4)S(10)](4-) units. Self-assembly reactions of the Zn(2+) linker and anionic thiostannate clusters yielded polymeric random Zn/Sn/S networks with gelation properties. Supercritical drying of the gels and solvent/counterion removal resulted in a metal sulfur framework. Zn(2)Sn(x)S(2x+2) (x = 1, 2, 4) aerogels showed high surface areas (363-520 m(2)/g) and pore volumes (1.1-1.5 cm(3)/g), and wide bandgap energies (2.8-3.2 eV). Scanning and transmission electron microscopy studies show the pores are micro- (d < 2 nm), meso- (2 nm < d < 50 nm), and macro- (d > 50 nm) regions. The zinc chalcogenide aerogels also possess high affinities toward soft heavy metals and reversible absorption of strong electron-accepting molecules.
引用
收藏
页码:2447 / 2456
页数:10
相关论文
共 68 条
[1]  
ALLEN GC, 1992, ADV MATER, V4, P424, DOI 10.1002/adma.19920040611
[2]   Metallic conduction at organic charge-transfer interfaces [J].
Alves, Helena ;
Molinari, Anna S. ;
Xie, Hangxing ;
Morpurgo, Alberto F. .
NATURE MATERIALS, 2008, 7 (07) :574-580
[3]   Sol-gel methods for the assembly of metal chalcogenide quantum dots [J].
Arachchige, Indika U. ;
Brock, Stephanie L. .
ACCOUNTS OF CHEMICAL RESEARCH, 2007, 40 (09) :801-809
[4]   Sol-gel processing of semiconducting metal chalcogenide xerogels: Influence of dimensionality on quantum confinement effects in a nanoparticle network [J].
Arachchige, IU ;
Mohanan, JL ;
Brock, SL .
CHEMISTRY OF MATERIALS, 2005, 17 (26) :6644-6650
[5]   High-surface-area mesoporous germanium from oxidative polymerization of the deltahedral [(Ge9]4- cluster:: Electronic structure modulation with donor and acceptor molecules [J].
Armatas, Gerasimos S. ;
Kanatzidis, Mercouri G. .
ADVANCED MATERIALS, 2008, 20 (03) :546-+
[6]   Hexagonal mesoporous germanium [J].
Armatas, Gerasimos S. ;
Kanatzidis, Mercouri G. .
SCIENCE, 2006, 313 (5788) :817-820
[7]   Mesostructured germanium with cubic pore symmetry [J].
Armatas, Gerasimos S. ;
Kanatzidis, Mercouri G. .
NATURE, 2006, 441 (7097) :1122-1125
[8]   Size Dependence in Hexagonal Mesoporous Germanium: Pore Wall Thickness versus Energy Gap and Photoluminescence [J].
Armatas, Gerasimos S. ;
Kanatzidis, Mercouri G. .
NANO LETTERS, 2010, 10 (09) :3330-3336
[9]   AMORPHOUS MOLYBDENUM SULFIDE ELECTRODES FOR NONAQUEOUS ELECTROCHEMICAL-CELLS [J].
AUBORN, JJ ;
BARBERIO, YL ;
HANSON, KJ ;
SCHLEICH, DM ;
MARTIN, MJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (03) :580-586
[10]   Aerogels from metal chalcogenides and their emerging unique properties [J].
Bag, Santanu ;
Arachchige, Indika U. ;
Kanatzidis, Mercouri G. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (31) :3628-3632