Concealed Object Detection

被引:348
作者
Fan, Deng-Ping [1 ,2 ]
Ji, Ge-Peng [2 ]
Cheng, Ming-Ming [1 ]
Shao, Ling [2 ]
机构
[1] Nankai Univ, Coll Comp Sci, Tianjin 300071, Peoples R China
[2] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
关键词
Object detection; Annotations; Task analysis; Image segmentation; Benchmark testing; Animals; Art; Concealed object detection; camouflaged object detection; COD; dataset; benchmark; CAMOUFLAGE; MODEL; CONTRAST;
D O I
10.1109/TPAMI.2021.3085766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the first systematic study on concealed object detection (COD), which aims to identify objects that are visually embedded in their background. The high intrinsic similarities between the concealed objects and their background make COD far more challenging than traditional object detection/segmentation. To better understand this task, we collect a large-scale dataset, called COD10K, which consists of 10,000 images covering concealed objects in diverse real-world scenarios from 78 object categories. Further, we provide rich annotations including object categories, object boundaries, challenging attributes, object-level labels, and instance-level annotations. Our COD10K is the largest COD dataset to date, with the richest annotations, which enables comprehensive concealed object understanding and can even be used to help progress several other vision tasks, such as detection, segmentation, classification etc. Motivated by how animals hunt in the wild, we also design a simple but strong baseline for COD, termed the Search Identification Network (SINet). Without any bells and whistles, SINet outperforms twelve cutting-edge baselines on all datasets tested, making them robust, general architectures that could serve as catalysts for future research in COD. Finally, we provide some interesting findings, and highlight several potential applications and future directions. To spark research in this new field, our code, dataset, and online demo are available at our project page: http://mmcheng.net/cod.
引用
收藏
页码:6024 / 6042
页数:19
相关论文
共 109 条
[1]  
Afouras T, 2020, Arxiv, DOI arXiv:2008.04237
[2]  
[Anonymous], 2017, P ICLR
[3]  
[Anonymous], 2010, International journal of computer vision, DOI DOI 10.1007/s11263-009-0275-4
[4]  
[Anonymous], 2014, Speeding up convolutional neural networks with low rank expansions
[5]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[6]   Salient object detection: A survey [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Hou, Qibin ;
Jiang, Huaizu ;
Li, Jia .
COMPUTATIONAL VISUAL MEDIA, 2019, 5 (02) :117-150
[7]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[8]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[9]   Reverse Attention for Salient Object Detection [J].
Chen, Shuhan ;
Tan, Xiuli ;
Wang, Ben ;
Hu, Xuelong .
COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 :236-252
[10]   Global Contrast based Salient Region Detection [J].
Cheng, Ming-Ming ;
Zhang, Guo-Xin ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, :409-416