INITIAL BOUNDARY VALUE PROBLEM OF A CLASS OF MIXED PSEUDO-PARABOLIC KIRCHHOFF EQUATIONS

被引:2
作者
Cao, Yang [1 ]
Zhao, Qiuting [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 06期
关键词
Pseudo-parabolic; Kirchhoff equation; global existence; blow-up; BLOW-UP; GLOBAL EXISTENCE; POTENTIAL WELLS; TIME; FUNCTIONALS; EXPONENT;
D O I
10.3934/era.2021064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the initial boundary value problem for a mixed pseudo-parabolic Kirchhoff equation. Due to the comparison principle being invalid, we use the potential well method to give a threshold result of global existence and non-existence for the sign-changing weak solutions with initial energy J(u(0)) <= d. When the initial energy J(u(0)) > d, we find another criterion for the vanishing solution and blow-up solution. Our interest also lies in the discussion of the exponential decay rate of the global solution and life span of the blow-up solution.
引用
收藏
页码:3833 / 3851
页数:19
相关论文
共 36 条
[1]   Global Nonexistence for Nonlinear Kirchhoff Systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :489-516
[2]  
Brezis H, 2011, UNIVERSITEXT, P1
[3]   BLOWUP IN A PARTIAL-DIFFERENTIAL EQUATION WITH CONSERVED 1ST INTEGRAL [J].
BUDD, C ;
DOLD, B ;
STUART, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (03) :718-742
[4]   Asymptotic behavior of global solutions to a class of mixed pseudo-parabolic Kirchhoff equations [J].
Cao, Yang ;
Zhao, Qiuting .
APPLIED MATHEMATICS LETTERS, 2021, 118 (118)
[5]   Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness [J].
Caraballo, Tomas ;
Herrera-Cobos, Marta ;
Marin-Rubio, Pedro .
NONLINEAR DYNAMICS, 2016, 84 (01) :35-50
[6]   DIGITAL REMOVAL OF RANDOM MEDIA IMAGE DEGRADATIONS BY SOLVING DIFFUSION EQUATION BACKWARDS IN TIME [J].
CARASSO, AS ;
SANDERSON, JG ;
HYMAN, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :344-367
[7]   GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR INFINITELY DEGENERATE SEMILINEAR PSEUDO-PARABOLIC EQUATIONS WITH LOGARITHMIC NONLINEARITY [J].
Chen, Hua ;
Xu, Huiyang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) :1185-1203
[8]   Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity [J].
Chen, Sitong ;
Zhang, Binlin ;
Tang, Xianhua .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :148-167
[9]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[10]   Global existence and blow-up for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity [J].
Ding, Hang ;
Zhou, Jun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (02) :393-420