Error estimation in the phase plane method of multi-exponential decay analysis

被引:4
作者
Novikov, EG [1 ]
机构
[1] Belarusian State Univ, Syst Anal Dept, Minsk 220050, BELARUS
关键词
fluorescence decay fitting; multi-exponential decay law; phase plane method; Prony method; Marquardt nonlinear least squares; covariance matrix; variance; bootstrap;
D O I
10.1016/S0030-4018(98)00050-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The problems of error estimation for the parameters of a multi-exponential fluorescence decay law are considered. Two algorithms for the determination of the covariance matrix in the phase plane method, based on the analytical transformations and bootstrap approach, are suggested. Simulation experiments have been performed in order to show the applicability of the proposed algorithms for the determination of the fluorescence decay parameters and their standard deviations. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 28 条
[1]  
AIVAZYAN SA, 1985, APPL STAT STUDY RELA
[2]  
AMELOOT M, 1992, METHOD ENZYMOL, V210, P279
[3]  
[Anonymous], 1979, The Advanced Theory of Statistics
[4]  
Apanasovich V.V., 1992, J APPL SPECTROSC, V56, P538
[5]   DECONVOLUTION METHOD FOR FLUORESCENCE DECAYS [J].
APANASOVICH, VV ;
NOVIKOV, EG .
OPTICS COMMUNICATIONS, 1990, 78 (3-4) :279-282
[6]  
APANASOVICH VV, 1994, P SOC PHOTO-OPT INS, V2340, P59, DOI 10.1117/12.195957
[7]  
Bevington R., 1969, DATA REDUCTION ERROR
[8]  
DEMAS JN, 1983, EXCITED STATE LIFTIM
[9]  
Eaton D. F., 1990, PURE APPL CHEM, V62, P1631, DOI DOI 10.1351/pac199062081631
[10]  
Efron B., 1982, SOC IND APPL MATH CB, V38, DOI [DOI 10.1137/1.9781611970319, 10.1137/1.9781611970319]