NONEXPANSIVE SET-VALUED MAPPINGS IN METRIC AND BANACH SPACES

被引:0
作者
Dhompongsa, S. [1 ]
Kirk, W. A. [2 ]
Panyanak, B. [1 ]
机构
[1] Chiang Mai Univ, Dept Math, Fac Sci, Chiang Mai 50200, Thailand
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Nonexpansive mappings; CAT(0) spaces; fixed points; set-valued mappings;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend recent homotopy results of Sims, Xu, and Yuan for set-valued maps to a CAT(0) setting. We also introduce art ultrapower approach to proving fixed point theorems for nonexpansive set-valued mappings, both in this setting and in Banach spaces. This method provides an efficient. way of recovering all of the classical Banach space results.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 1990, NONSTANDARD METHODS
[2]  
Bridson M.R., 1999, METRIC SPACES NONPOS
[3]  
BROWN KS, 1989, BUILDINGS
[4]  
BURAGO D., 2001, A course in metric geometry, V33, DOI 10.1090/gsm/033
[5]   Fixed points of uniformly lipschitzian mappings [J].
Dhompongsa, S. ;
Kirk, W. A. ;
Sims, Brailey .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) :762-772
[6]   Lim's theorems for multivalued mappings in CAT(0) spaces [J].
Dhompongsa, S ;
Kaewkhao, A ;
Panyanak, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :478-487
[7]  
Dominguez Benavides T., 2004, ANN U MARIA CURIE, V58, P37
[8]  
DOWNING D, 1977, MATH JAPONICAE, V22, P99
[9]   MULTIVALUED NONEXPANSIVE MAPPINGS AND OPIALS CONDITION [J].
DOZO, EL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 38 (02) :286-292
[10]  
Goebel K., 1984, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings