Machine Learning for Fetal Growth Prediction

被引:32
作者
Naimi, Ashley I. [1 ]
Platt, Robert W. [2 ]
Larkin, Jacob C. [3 ]
机构
[1] Univ Pittsburgh, Dept Epidemiol, 130 DeSoto St,503 Parran Hall, Pittsburgh, PA 15261 USA
[2] McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, Montreal, PQ, Canada
[3] Univ Pittsburgh, Magee Womens Res Inst, Pittsburgh, PA USA
关键词
GESTATIONAL-AGE; WEIGHT; LENGTH; HEAD;
D O I
10.1097/EDE.0000000000000788
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Birthweight is often used as a proxy for fetal weight. Problems with this practice have recently been brought to light. We explore whether data available at birth can be used to predict estimated fetal weight using linear and quantile regression, random forests, Bayesian additive regression trees, and generalized boosted models. We train and validate each approach using 18,517 pregnancies (31,948 ultrasound visits) from the Magee-Womens Obstetric Maternal and Infant data and 240 pregnancies in a separate dataset of high-risk pregnancies. We also quantify the relation between smoking and small-for-gestational-age birth, defined as a birthweight in the lower 10th percentile of a population birthweight standard and estimated and predicted fetal weight standard. Using mean squared error and median absolute deviation criteria, quantile regression performed best among the regression-based approaches, but generalized boosted models performed best overall. Using the birthweight standard, smoking during pregnancy increased the risk of small-for-gestational-age 3.84-fold (95% CI: 2.70, 5.47). This ratio dropped to 1.65 (95% CI: 1.50, 1.81) when using the correct fetal weight standard, which was no different from the machine learning-based predicted standards, but higher than the regression-based predicted standards. Machine learning algorithms show promise in recovering missing fetal weight information.
引用
收藏
页码:290 / 298
页数:9
相关论文
共 50 条
  • [21] Prediction of mass and discrimination of common bean by machine learning approaches
    Ozaktan, Hamdi
    Cetin, Necati
    Uzun, Sati
    Uzun, Oguzhan
    Ciftci, Cemalettin Yasar
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2024, 26 (07) : 18139 - 18160
  • [22] Machine learning for accurate estimation of fetal gestational age based on ultrasound images
    Lee, Lok Hin
    Bradburn, Elizabeth
    Craik, Rachel
    Yaqub, Mohammad
    Norris, Shane A. A.
    Ismail, Leila Cheikh
    Ohuma, Eric O. O.
    Barros, Fernando C. C.
    Lambert, Ann
    Carvalho, Maria
    Jaffer, Yasmin A. A.
    Gravett, Michael
    Purwar, Manorama
    Wu, Qingqing
    Bertino, Enrico
    Munim, Shama
    Min, Aung Myat
    Bhutta, Zulfiqar
    Villar, Jose
    Kennedy, Stephen H. H.
    Noble, J. Alison
    Papageorghiou, Aris T. T.
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [23] Fetal growth pathology score: a novel ultrasound parameter for individualized assessment of third trimester growth abnormalities
    Deter, Russell L.
    Lee, Wesley
    Kingdom, John C. P.
    Romero, Roberto
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2018, 31 (07) : 866 - 876
  • [24] Do differences in diagnostic criteria for late fetal growth restriction matter?
    Mylrea-Foley, Bronacha
    Napolitano, Raffaele
    Gordijn, Sanne
    Wolf, Hans
    Lees, Christoph C.
    Stampalija, Tamara
    AMERICAN JOURNAL OF OBSTETRICS & GYNECOLOGY MFM, 2023, 5 (11)
  • [25] Commentary on Special Issue "Fetal Growth: What Is New in the Clinical Research?"
    Cosmi, Erich
    Visentin, Silvia
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (19)
  • [26] Ensemble Learning to Improve the Prediction of Fetal Macrosomia and Large-for-Gestational Age
    Ye, Shangyuan
    Zhang, Hui
    Shi, Fuyan
    Guo, Jing
    Wang, Suzhen
    Zhang, Bo
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (02)
  • [27] Prediction of fetal growth restriction and small for gestational age by ultrasound cardiac parameters
    Schaak, Ricarda
    Danzer, Moritz Fabian
    Steinhard, Johannes
    Schmitz, Ralf
    Koester, Helen A.
    Moellers, Mareike
    Sondern, Kathleen
    De Santis, Chiara
    Willy, Daniela
    Oelmeier, Kathrin
    EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2024, 300 : 142 - 149
  • [28] What is the value of ultrasound soft tissue measurements in the prediction of abnormal fetal growth?
    Farah, N.
    Stuart, B.
    Donnelly, V.
    Rafferty, G.
    Turner, M.
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2009, 29 (06) : 457 - 463
  • [29] Fetal growth velocity: the NICHD fetal growth studies
    Grantz, Katherine L.
    Kim, Sungduk
    Grobman, William A.
    Newman, Roger
    Owen, John
    Skupski, Daniel
    Grewal, Jagteshwar
    Chien, Edward K.
    Wing, Deborah A.
    Wapner, Ronald J.
    Ranzini, Angela C.
    Nageotte, Michael P.
    Hinkle, Stefanie N.
    Pugh, Sarah
    Li, Hanyun
    Fuchs, Karin
    Hediger, Mary
    Louis, Germaine M. Buck
    Albert, Paul S.
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2018, 219 (03) : 285.e1 - 285.e36
  • [30] Periconceptional Seafood Intake and Fetal Growth
    Mohanty, April F.
    Thompson, Mary Lou
    Burbacher, Thomas M.
    Siscovick, David S.
    Williams, Michelle A.
    Enquobahrie, Daniel A.
    PAEDIATRIC AND PERINATAL EPIDEMIOLOGY, 2015, 29 (05) : 376 - 387